Câu hỏi:
05/06/2025 146
Chiều cao so với mực nước biển trung bình tại thời điểm \(t\) (giây) của mỗi cơn sóng được cho bởi hàm số \(h\left( t \right) = 75\sin \left( {\frac{{\pi t}}{8}} \right)\), trong đó \(h\left( t \right)\) được tính bằng centimét.
a) Chiều cao của sóng tại các thời điểm 5 giây bằng \(69,3\,\,{\rm{(cm)}}\).
b) Chiều cao của sóng tại các thời điểm 20 giây bằng \(75\,\,{\rm{(cm)}}\).
c) Trong 30 giây đầu tiên (kể từ mốc \(t = 0\) giây), thời điểm để sóng đạt chiều cao lớn nhất 6 giây.
d) Trong 30 giây đầu tiên (kể từ mốc \(t = 0\) giây), thời điểm để sóng đạt chiều cao lớn nhất 18 giây.
(Tất cả kết quả được làm tròn đến hàng phần mười)
Chiều cao so với mực nước biển trung bình tại thời điểm \(t\) (giây) của mỗi cơn sóng được cho bởi hàm số \(h\left( t \right) = 75\sin \left( {\frac{{\pi t}}{8}} \right)\), trong đó \(h\left( t \right)\) được tính bằng centimét.
a) Chiều cao của sóng tại các thời điểm 5 giây bằng \(69,3\,\,{\rm{(cm)}}\).
b) Chiều cao của sóng tại các thời điểm 20 giây bằng \(75\,\,{\rm{(cm)}}\).
c) Trong 30 giây đầu tiên (kể từ mốc \(t = 0\) giây), thời điểm để sóng đạt chiều cao lớn nhất 6 giây.
d) Trong 30 giây đầu tiên (kể từ mốc \(t = 0\) giây), thời điểm để sóng đạt chiều cao lớn nhất 18 giây.
(Tất cả kết quả được làm tròn đến hàng phần mười)
Quảng cáo
Trả lời:
Khi \(t = 5\), ta có: \(h\left( 5 \right) = 75\sin \left( {\frac{{\pi \cdot 5}}{8}} \right) \approx 69,3\,\,{\rm{(cm)}}\).
Khi \(t = 20\), ta có: \(h\left( {20} \right) = 75\sin \left( {\frac{{\pi \cdot 20}}{8}} \right) = 75\,\,{\rm{(cm)}}\).
Ta có \(\sin \left( {\frac{{\pi t}}{8}} \right) \le 1 \Rightarrow 75\sin \left( {\frac{{\pi t}}{8}} \right) \le 75\) hay \(h\left( t \right) \le 75\).
Giá trị lớn nhất của \(h\left( t \right)\) là 75, khi đó \(\sin \left( {\frac{{\pi t}}{8}} \right) = 1 \Rightarrow \frac{{\pi t}}{8} = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) \( \Rightarrow t = 4 + 16k\left( {k \in \mathbb{Z}} \right)\).
Vì \(t \in \left[ {0\,;30} \right] \Rightarrow t \in \left\{ {4\,;20} \right\}\) (ứng với \(k\) bằng 0 và 1).
Vậy tại các thời điểm 4 giây hoặc 20 giây (trong 30 giây đầu tiên) thì cơn sóng đạt chiều cao cực đại (là \(75\;\,{\rm{cm}}\)).
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(f\left( {\frac{\pi }{8}} \right) = \tan \frac{\pi }{4} - 1 = 0\).
Điều kiện xác định: \(2x \ne \frac{\pi }{2} + k\pi ,\,k \in \mathbb{Z} \Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2},\,k \in \mathbb{Z}\).
Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{4} + \frac{{k\pi }}{2}|k \in \mathbb{Z}} \right\}\) và tập giá trị của hàm số là \[\mathbb{R}.\]
Ta có \(f\left( { - x} \right) = \tan \left( { - 2x} \right) - 1 = - \tan 2x - 1\) nên hàm số \(f\left( x \right)\) không chẵn không lẻ.
Ta có \(f\left( {x + \pi } \right) = \tan \left( {2x + \pi } \right) - 1 = \tan 2x - 1 = f\left( x \right)\).
Vậy hàm số \(f\left( x \right)\) là hàm tuần hoàn với chu kì \(\pi \).
Đáp án: a) Đúng, b) Sai, c) Sai, d) Đúng.
Lời giải
Đáp án đúng là: B
Ta có
Do đó giá trị nhỏ nhất của hàm số là \( - \sqrt 2 .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.