Câu hỏi:

17/06/2025 7

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

 Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho bằng  (ảnh 1)

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dựa vào đồ thị ta có \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 0\) nên đồ thị hàm số có tiệm cận ngang \(y = 0\).

Mặt khác \(\mathop {\lim }\limits_{x \to  - {2^ + }} f\left( x \right) =  - \infty \); \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) =  + \infty \) nên đồ thị hàm số có hai tiệm cận đứng là \(x =  - 2\) và \(x = 0\). Vậy đồ thị hàm số có 3 tiệm cận. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y' = 3{x^2} + 6x - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 3\end{array} \right.\). Suy ra các điểm cực trị của đồ thị hàm số là \(A\left( {1; - 6} \right)\) và \(B\left( { - 3;26} \right)\).

Đường thẳng \(AB\)  đi qua \(A\) nhận vectơ \(\overrightarrow {AB}  = \left( { - 4;32} \right)\) làm vectơ chỉ phương, suy ra \(\overrightarrow n  = \left( {8;1} \right)\) là một vectơ pháp tuyến của đường thẳng\(AB\) nên phương trình đường thẳng \(AB\) có dạng:

\(8\left( {x - 1} \right) + 1\left( {y + 6} \right) = 0 \Leftrightarrow y =  - 8x + 2\)\( \Rightarrow a =  - 8;b = 2 \Rightarrow a + b =  - 6\).

Đáp án: \( - 6\).

Câu 2

Cho hàm số \(y = f\left( x \right)\) xác định, có đạo hàm trên \(\mathbb{R}\) và \(f'\left( x \right)\) có đồ thị như hình vẽ  dưới.

 v (ảnh 1)

Hàm số \[y = f\left( x \right)\] đồng biến trên khoảng nào dưới đây?

Lời giải

Dựa vào đồ thị ta thấy \(f'\left( x \right) > 0 \Leftrightarrow \left[ \begin{array}{l} - 1 < x < 1\\x > 4\end{array} \right.\). Suy ra hàm số \[y = f\left( x \right)\] đồng biến trên các khoảng \[\left( { - 1;1} \right),\left( {4; + \infty } \right)\]. Chọn B.

Câu 3

Đồ thị hàm số \[y = {x^3} - 6{x^2} + 9x - 1\] có toạ độ điểm cực đại là     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay