Câu hỏi:
17/06/2025 7Trong một công viên có một hồ nước và một đường đi lát gạch hoa. Thiết lập hệ trục \(Oxy\) như hình vẽ dưới, kiến trúc sư thấy rằng bờ hồ có thể coi như một nhánh của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) và đường đi khi đó ứng với đường thẳng \(\left( d \right):y = - x + 4\). Để đảm bảo ánh sáng, kiến trúc sư muốn đặt 2 cột đèn trên bờ hồ và 2 cột đèn trên đường đi sao cho 4 cột đèn này tạo thành một hình vuông. Tính khoảng cách giữa hai cột đèn trên bờ hồ (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:
Gọi \(\left( {{d_1}} \right):y = - x + m\) (với \(m > 4\)) song song với \(\left( d \right):y = - x + 4\) và cắt \(\left( C \right):y = \frac{{2x + 1}}{{x - 1}}\) tại hai điểm phân biệt \(B,C\)\(\left( {{x_B}\,;\,{x_C} > 1} \right)\).
Phương trình hoành độ giao điểm của \(\left( {{d_1}} \right)\) và \(\left( C \right)\): \(\frac{{2x + 1}}{{x - 1}} = - x + m \Leftrightarrow {x^2} + \left( {1 - m} \right)x + m + 1 = 0.\)
\(\Delta = {m^2} - 6m - 3 > 0 \Leftrightarrow \left[ \begin{array}{l}m > 3 + 2\sqrt 3 \\m < 3 - 2\sqrt 3 \end{array} \right. \Leftrightarrow m > 3 + 2\sqrt 3 \) (vì \(m > 4\)) (1).
Khi đó ta có: \(\left\{ \begin{array}{l}{x_C} + {x_B} = m - 1\\{x_C} \cdot {x_B} = m + 1\end{array} \right.\).
Suy ra \(CB = \sqrt {{{\left( {{x_B} - {x_C}} \right)}^2} + {{\left( {{y_B} - {y_C}} \right)}^2}} = \sqrt {{{\left( {{x_B} - {x_C}} \right)}^2} + {{\left( { - {x_B} + m + {x_C} - m} \right)}^2}} = \sqrt {2{{\left( {{x_B} - {x_C}} \right)}^2}} \).
\( \Rightarrow C{B^2} = 2{\left( {{x_B} - {x_C}} \right)^2} = 2{\left( {{x_B} + {x_C}} \right)^2} - 8{x_B} \cdot {x_C} = 2{m^2} - 12m - 6\).
Mặt khác chọn \(I\left( {0;4} \right) \in \left( d \right)\), ta có khoảng cách giữa hai đường thẳng \(\left( d \right);\left( {{d_1}} \right)\) là:
\(AB = d\left( {I,\left( {{d_1}} \right)} \right) = \frac{{\left| {4 - m} \right|}}{{\sqrt 2 }} = \frac{{m - 4}}{{\sqrt 2 }}\).
Để \(ABCD\) là hình vuông thì \(A{B^2} = B{C^2} \Leftrightarrow \frac{{{{\left( {m - 4} \right)}^2}}}{2} = 2{m^2} - 12m - 6 \Leftrightarrow m = \frac{{8 \pm 2\sqrt {37} }}{3}\).
Kết hợp điều kiện (1) suy ra \(m = \frac{{8 + 2\sqrt {37} }}{3}\).
Vậy khoảng cách giữa hai cột đèn bên bờ hồ bằng \(\frac{{\frac{{8 + 2\sqrt {37} }}{3} - 4}}{{\sqrt 2 }} \approx 1,92.\)
Đáp án: \(1,92\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Dựa vào đồ thị ta thấy \(f'\left( x \right) > 0 \Leftrightarrow \left[ \begin{array}{l} - 1 < x < 1\\x > 4\end{array} \right.\). Suy ra hàm số \[y = f\left( x \right)\] đồng biến trên các khoảng \[\left( { - 1;1} \right),\left( {4; + \infty } \right)\]. Chọn B.
Lời giải
Ta có \[y' = 3{x^2} - 12x + 9\]; \[y' = 0 \Leftrightarrow 3{x^2} - 12x + 9 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\].
Bảng biến thiên:
Vậy đồ thị hàm số \[y = {x^3} - 6{x^2} + 9x - 1\] có toạ độ điểm cực đại là \(\left( {1\,;3} \right)\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải