Câu hỏi:

17/06/2025 38 Lưu

PHẦN III. Thí sinh trả lời từ câu 1 đến câu 6.

Biết đồ thị hàm số \(y = {x^3} + 3{x^2} - 9x - 1\) có hai điểm cực trị \(A\)\(B\). Phương trình đường thẳng \(AB\) \(y = ax + b\,\left( {a,b \in \mathbb{R}} \right)\). Tính tổng \(a + b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(y' = 3{x^2} + 6x - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 3\end{array} \right.\). Suy ra các điểm cực trị của đồ thị hàm số là \(A\left( {1; - 6} \right)\) và \(B\left( { - 3;26} \right)\).

Đường thẳng \(AB\)  đi qua \(A\) nhận vectơ \(\overrightarrow {AB}  = \left( { - 4;32} \right)\) làm vectơ chỉ phương, suy ra \(\overrightarrow n  = \left( {8;1} \right)\) là một vectơ pháp tuyến của đường thẳng\(AB\) nên phương trình đường thẳng \(AB\) có dạng:

\(8\left( {x - 1} \right) + 1\left( {y + 6} \right) = 0 \Leftrightarrow y =  - 8x + 2\)\( \Rightarrow a =  - 8;b = 2 \Rightarrow a + b =  - 6\).

Đáp án: \( - 6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có \(y =  - x + 3 - \frac{1}{{x + 2}} \Rightarrow y' =  - 1 + \frac{1}{{{{\left( {x + 2} \right)}^2}}} = \frac{{ - {x^2} - 4x - 3}}{{{{\left( {x + 2} \right)}^2}}}\).

Với \(y' = 0 \Leftrightarrow  - {x^2} - 4x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1 \notin \left[ { - 4; - 2} \right)\\x =  - 3 \in \left[ { - 4; - 2} \right)\end{array} \right.\).

Ta có bảng biến thiên:

v (ảnh 1)

Dựa vào đồ thị \(\mathop {\min }\limits_{\left[ { - 4; - 2} \right)} y = 7\). Chọn C.

Lời giải

Gọi \(\left( {{d_1}} \right):y =  - x + m\) (với \(m > 4\)) song song với \(\left( d \right):y =  - x + 4\) và cắt \(\left( C \right):y = \frac{{2x + 1}}{{x - 1}}\) tại hai điểm phân biệt \(B,C\)\(\left( {{x_B}\,;\,{x_C} > 1} \right)\).

Phương trình hoành độ giao điểm của \(\left( {{d_1}} \right)\) và \(\left( C \right)\): \(\frac{{2x + 1}}{{x - 1}} =  - x + m \Leftrightarrow {x^2} + \left( {1 - m} \right)x + m + 1 = 0.\)

\(\Delta  = {m^2} - 6m - 3 > 0 \Leftrightarrow \left[ \begin{array}{l}m > 3 + 2\sqrt 3 \\m < 3 - 2\sqrt 3 \end{array} \right. \Leftrightarrow m > 3 + 2\sqrt 3 \) (vì \(m > 4\))   (1).

Khi đó ta có: \(\left\{ \begin{array}{l}{x_C} + {x_B} = m - 1\\{x_C} \cdot {x_B} = m + 1\end{array} \right.\).

Suy ra \(CB = \sqrt {{{\left( {{x_B} - {x_C}} \right)}^2} + {{\left( {{y_B} - {y_C}} \right)}^2}}  = \sqrt {{{\left( {{x_B} - {x_C}} \right)}^2} + {{\left( { - {x_B} + m + {x_C} - m} \right)}^2}}  = \sqrt {2{{\left( {{x_B} - {x_C}} \right)}^2}} \).

\( \Rightarrow C{B^2} = 2{\left( {{x_B} - {x_C}} \right)^2} = 2{\left( {{x_B} + {x_C}} \right)^2} - 8{x_B} \cdot {x_C} = 2{m^2} - 12m - 6\).

Mặt khác chọn \(I\left( {0;4} \right) \in \left( d \right)\), ta có khoảng cách giữa hai đường thẳng \(\left( d \right);\left( {{d_1}} \right)\) là:

\(AB = d\left( {I,\left( {{d_1}} \right)} \right) = \frac{{\left| {4 - m} \right|}}{{\sqrt 2 }} = \frac{{m - 4}}{{\sqrt 2 }}\).

Để \(ABCD\) là hình vuông thì \(A{B^2} = B{C^2} \Leftrightarrow \frac{{{{\left( {m - 4} \right)}^2}}}{2} = 2{m^2} - 12m - 6 \Leftrightarrow m = \frac{{8 \pm 2\sqrt {37} }}{3}\).

Kết hợp điều kiện (1) suy ra \(m = \frac{{8 + 2\sqrt {37} }}{3}\).

Vậy khoảng cách giữa hai cột đèn bên bờ hồ bằng \(\frac{{\frac{{8 + 2\sqrt {37} }}{3} - 4}}{{\sqrt 2 }} \approx 1,92.\)

Đáp án: \(1,92\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP