Câu hỏi:

17/06/2025 20

Một tấm ván hình chữ nhật \(ABCD\) được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu \(2{\rm{\;m}}\). Cho biết \(AB = 1\;\,{\rm{m;}}\,\,AD = 3,5\;\,{\rm{m}}\). Tính tan của góc giữa đường thẳng \(BD\) và đáy hố (làm tròn kết quả đến hàng phần trăm).

V (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(DK = CH = 2,AK = \sqrt {A{D^2} - D{K^2}}  = \frac{{\sqrt {33} }}{2}\), \(BK = \sqrt {A{K^2} + A{B^2}}  = \frac{{\sqrt {37} }}{2}\).

Khi đó, \(\tan \widehat {DBK} = \frac{{DK}}{{KB}} = \frac{2}{{\frac{{\sqrt {37} }}{2}}} = \frac{4}{{\sqrt {37} }} \approx 0,66\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

V (ảnh 1)

Ta có \[M\] là trung điểm của \[AB\].

Theo giả thiết suy ra \[ABCD\] là nửa lục giác đều nội tiếp đường tròn đường kính \[AB\]\[ \Rightarrow \left\{ \begin{array}{l}\widehat {ACB} = 90^\circ ;\widehat {ABC} = 60^\circ \\AC = \sqrt 3 \end{array} \right.\].

Vì \[DM{\rm{//}}BC \Rightarrow DM{\rm{//}}\left( {SBC} \right)\].

Do đó \[d\left( {DM,SB} \right) = d\left( {DM,\left( {SBC} \right)} \right) = d\left( {M,\left( {SBC} \right)} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right)\] (vì \[MB = \frac{1}{2}AB\]).

Kẻ \[AH \bot SC\] tại \[H\]. Ta có \[\left\{ \begin{array}{l}BC \bot AC\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAC} \right)\]\[ \Rightarrow AH \bot BC\].

Khi đó \[\left\{ \begin{array}{l}AH \bot SC\\AH \bot BC\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AH\].

Xét tam giác \[SAC\] vuông tại \[A\], ta có \[A{H^2} = \frac{{A{C^2} \cdot S{A^2}}}{{A{C^2} + S{A^2}}} = \frac{{{{\left( {\sqrt 3 } \right)}^2} \cdot {3^2}}}{{{{\left( {\sqrt 3 } \right)}^2} + {3^2}}} = \frac{9}{4}\]\[ \Rightarrow AH = \frac{3}{2}\].

Vậy \[d\left( {DM,SB} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right) = \frac{1}{2}AH = \frac{3}{4} = 0,75\].

Lời giải

Minh họa khối chân tháp và đặt tên các điểm như hình dưới đây.

Số tiền để mua bê tông tươi làm chân tháp hết bao nhiêu triệu đồng (làm tròn kết quả đến hàng đơn vị)? (ảnh 2)

Theo bài ra, ta có \(AB = 5,A'B' = 2,CC' = 3\).

Có \(ABCD\) là hình vuông \( \Rightarrow CO = \frac{1}{2}AC = \frac{{5\sqrt 2 }}{2}\).

Có \(A'B'C'D'\) là hình vuông \( \Rightarrow C'O' = \frac{1}{2}A'C' = \frac{{2\sqrt 2 }}{2} = \sqrt 2 \).

Kẻ \(C'H \bot OC\) tại \(H\). Suy ra \(OHC'O'\) là hình chữ nhật.

\( \Rightarrow OH = O'C' = \sqrt 2 ,\,\,CH = OC - OH = \frac{{5\sqrt 2 }}{2} - \sqrt 2  = \frac{{3\sqrt 2 }}{2}\).

\( \Rightarrow OO' = C'H = \sqrt {C{{C'}^2} - C{H^2}}  = \sqrt {{3^2} - {{\left( {\frac{{3\sqrt 2 }}{2}} \right)}^2}}  = \frac{{3\sqrt 2 }}{2}\).

Diện tích đáy lớn là \(S = A{B^2} = {5^2} = 25\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Diện tích đáy bé là \(S' = A'{B'^2} = {2^2} = 4\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Thể tích khối chóp cụt là: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'}  + S'} \right) = \frac{1}{3} \cdot \frac{{3\sqrt 2 }}{2}\left( {25 + \sqrt {25 \cdot 4}  + 4} \right) = \frac{{39\sqrt 2 }}{2}\,\,{\rm{(}}{{\rm{m}}^{\rm{3}}}{\rm{)}}\).

Số tiền để mua bê tông tươi làm chân tháp là:

\(\frac{{39\sqrt 2 }}{2} \cdot 1\,470\,000 \approx 40\,538\,432{\rm{\;}}\)(đồng) \( \approx 41\,\)(triệu đồng).

Đáp án: \[41\].