Câu hỏi:

17/06/2025 19

Cho hình chóp \[S.ABCD\] có đáy là hình chữ nhật và \[SA\] vuông góc với mặt đáy. Góc nào dưới đây là góc giữa hai mặt phẳng \[\left( {SCD} \right)\] và \[\left( {ABCD} \right)\]?    
V (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do đáy \[ABCD\] là hình chữ nhật nên ta có có: \[CD \bot AD\].

Kết hợp với \[CD \bot SA\] nên ta có \[CD \bot \left( {SAD} \right) \Rightarrow SD \bot CD\].

Do đó \[\left( {\left( {SCD} \right)\,,\,\left( {ABCD} \right)} \right) = \left( {SD\,,\,AD} \right) = \widehat {SDA}\]. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

V (ảnh 1)

Ta có \[M\] là trung điểm của \[AB\].

Theo giả thiết suy ra \[ABCD\] là nửa lục giác đều nội tiếp đường tròn đường kính \[AB\]\[ \Rightarrow \left\{ \begin{array}{l}\widehat {ACB} = 90^\circ ;\widehat {ABC} = 60^\circ \\AC = \sqrt 3 \end{array} \right.\].

Vì \[DM{\rm{//}}BC \Rightarrow DM{\rm{//}}\left( {SBC} \right)\].

Do đó \[d\left( {DM,SB} \right) = d\left( {DM,\left( {SBC} \right)} \right) = d\left( {M,\left( {SBC} \right)} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right)\] (vì \[MB = \frac{1}{2}AB\]).

Kẻ \[AH \bot SC\] tại \[H\]. Ta có \[\left\{ \begin{array}{l}BC \bot AC\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAC} \right)\]\[ \Rightarrow AH \bot BC\].

Khi đó \[\left\{ \begin{array}{l}AH \bot SC\\AH \bot BC\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AH\].

Xét tam giác \[SAC\] vuông tại \[A\], ta có \[A{H^2} = \frac{{A{C^2} \cdot S{A^2}}}{{A{C^2} + S{A^2}}} = \frac{{{{\left( {\sqrt 3 } \right)}^2} \cdot {3^2}}}{{{{\left( {\sqrt 3 } \right)}^2} + {3^2}}} = \frac{9}{4}\]\[ \Rightarrow AH = \frac{3}{2}\].

Vậy \[d\left( {DM,SB} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right) = \frac{1}{2}AH = \frac{3}{4} = 0,75\].

Lời giải

Minh họa khối chân tháp và đặt tên các điểm như hình dưới đây.

Số tiền để mua bê tông tươi làm chân tháp hết bao nhiêu triệu đồng (làm tròn kết quả đến hàng đơn vị)? (ảnh 2)

Theo bài ra, ta có \(AB = 5,A'B' = 2,CC' = 3\).

Có \(ABCD\) là hình vuông \( \Rightarrow CO = \frac{1}{2}AC = \frac{{5\sqrt 2 }}{2}\).

Có \(A'B'C'D'\) là hình vuông \( \Rightarrow C'O' = \frac{1}{2}A'C' = \frac{{2\sqrt 2 }}{2} = \sqrt 2 \).

Kẻ \(C'H \bot OC\) tại \(H\). Suy ra \(OHC'O'\) là hình chữ nhật.

\( \Rightarrow OH = O'C' = \sqrt 2 ,\,\,CH = OC - OH = \frac{{5\sqrt 2 }}{2} - \sqrt 2  = \frac{{3\sqrt 2 }}{2}\).

\( \Rightarrow OO' = C'H = \sqrt {C{{C'}^2} - C{H^2}}  = \sqrt {{3^2} - {{\left( {\frac{{3\sqrt 2 }}{2}} \right)}^2}}  = \frac{{3\sqrt 2 }}{2}\).

Diện tích đáy lớn là \(S = A{B^2} = {5^2} = 25\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Diện tích đáy bé là \(S' = A'{B'^2} = {2^2} = 4\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Thể tích khối chóp cụt là: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'}  + S'} \right) = \frac{1}{3} \cdot \frac{{3\sqrt 2 }}{2}\left( {25 + \sqrt {25 \cdot 4}  + 4} \right) = \frac{{39\sqrt 2 }}{2}\,\,{\rm{(}}{{\rm{m}}^{\rm{3}}}{\rm{)}}\).

Số tiền để mua bê tông tươi làm chân tháp là:

\(\frac{{39\sqrt 2 }}{2} \cdot 1\,470\,000 \approx 40\,538\,432{\rm{\;}}\)(đồng) \( \approx 41\,\)(triệu đồng).

Đáp án: \[41\].