Câu hỏi:
17/06/2025 22
Cho hình chóp \[S.ABC\], đáy ABC có \[AB = 10{\rm{ cm}}\], \[BC = 12{\rm{ cm}}\], \[AC = 14{\rm{ cm}}\], các mặt bên cùng tạo với mặt phẳng đáy các góc bằng nhau và đều bằng \[\alpha \] thỏa mãn \[\tan \alpha = 3\]. Thể tích khối chóp \[S.ABC\] là
Quảng cáo
Trả lời:
Nửa chu vi tam giác \(ABC\) là:
\[p = \frac{{AB + BC + AC}}{2} = 18\,\,{\rm{(cm)}}\].
Theo công thức Heron, diện tích tam giác \(ABC\) là:
\(S = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} = 24\sqrt 6 \) (cm2).
Các mặt bên cùng tạo với mặt phẳng đáy các góc bằng nhau nên hình chiếu của S trên mặt phẳng \[\left( {ABC} \right)\] là tâm \(I\) của đường tròn nội tiếp \[\Delta ABC \Rightarrow SI \bot \left( {ABC} \right)\].
Kẻ \(IM \bot BC\) tại \(M\), từ đó suy ra \(BC \bot SM\).
Do đó, \(\left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \left( {SM,\,IM} \right) = \widehat {SMI} = \alpha \).
Lại có, diện tích tam giác \(ABC\) là: \[S = p \cdot r \Rightarrow IM = r = \frac{S}{p} = \frac{{4\sqrt 6 }}{3}\,\,{\rm{(cm)}}\].
\[\Delta SIM\] vuông tại I có \[SI = IM\tan \alpha = \frac{{4\sqrt 6 }}{3} \cdot 3 = 4\sqrt 6 \,\,{\rm{(cm)}}\].
Vậy \[{V_{S.ABC}} = \frac{1}{3} \cdot S \cdot SI = \frac{1}{3} \cdot 24\sqrt 6 \cdot 4\sqrt 6 = 192\,\,({\rm{c}}{{\rm{m}}^3})\]. Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[M\] là trung điểm của \[AB\].
Theo giả thiết suy ra \[ABCD\] là nửa lục giác đều nội tiếp đường tròn đường kính \[AB\]\[ \Rightarrow \left\{ \begin{array}{l}\widehat {ACB} = 90^\circ ;\widehat {ABC} = 60^\circ \\AC = \sqrt 3 \end{array} \right.\].
Vì \[DM{\rm{//}}BC \Rightarrow DM{\rm{//}}\left( {SBC} \right)\].
Do đó \[d\left( {DM,SB} \right) = d\left( {DM,\left( {SBC} \right)} \right) = d\left( {M,\left( {SBC} \right)} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right)\] (vì \[MB = \frac{1}{2}AB\]).
Kẻ \[AH \bot SC\] tại \[H\]. Ta có \[\left\{ \begin{array}{l}BC \bot AC\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAC} \right)\]\[ \Rightarrow AH \bot BC\].
Khi đó \[\left\{ \begin{array}{l}AH \bot SC\\AH \bot BC\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow d\left( {A,\left( {SBC} \right)} \right) = AH\].
Xét tam giác \[SAC\] vuông tại \[A\], ta có \[A{H^2} = \frac{{A{C^2} \cdot S{A^2}}}{{A{C^2} + S{A^2}}} = \frac{{{{\left( {\sqrt 3 } \right)}^2} \cdot {3^2}}}{{{{\left( {\sqrt 3 } \right)}^2} + {3^2}}} = \frac{9}{4}\]\[ \Rightarrow AH = \frac{3}{2}\].
Vậy \[d\left( {DM,SB} \right) = \frac{1}{2}d\left( {A,\left( {SBC} \right)} \right) = \frac{1}{2}AH = \frac{3}{4} = 0,75\].
Lời giải
Theo bài ra, ta có \(AB = 5,A'B' = 2,CC' = 3\).
Có \(ABCD\) là hình vuông \( \Rightarrow CO = \frac{1}{2}AC = \frac{{5\sqrt 2 }}{2}\).
Có \(A'B'C'D'\) là hình vuông \( \Rightarrow C'O' = \frac{1}{2}A'C' = \frac{{2\sqrt 2 }}{2} = \sqrt 2 \).
Kẻ \(C'H \bot OC\) tại \(H\). Suy ra \(OHC'O'\) là hình chữ nhật.
\( \Rightarrow OH = O'C' = \sqrt 2 ,\,\,CH = OC - OH = \frac{{5\sqrt 2 }}{2} - \sqrt 2 = \frac{{3\sqrt 2 }}{2}\).
\( \Rightarrow OO' = C'H = \sqrt {C{{C'}^2} - C{H^2}} = \sqrt {{3^2} - {{\left( {\frac{{3\sqrt 2 }}{2}} \right)}^2}} = \frac{{3\sqrt 2 }}{2}\).
Diện tích đáy lớn là \(S = A{B^2} = {5^2} = 25\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).
Diện tích đáy bé là \(S' = A'{B'^2} = {2^2} = 4\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).
Thể tích khối chóp cụt là: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right) = \frac{1}{3} \cdot \frac{{3\sqrt 2 }}{2}\left( {25 + \sqrt {25 \cdot 4} + 4} \right) = \frac{{39\sqrt 2 }}{2}\,\,{\rm{(}}{{\rm{m}}^{\rm{3}}}{\rm{)}}\).
Số tiền để mua bê tông tươi làm chân tháp là:
\(\frac{{39\sqrt 2 }}{2} \cdot 1\,470\,000 \approx 40\,538\,432{\rm{\;}}\)(đồng) \( \approx 41\,\)(triệu đồng).
Đáp án: \[41\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.