Câu hỏi:
17/06/2025 8PHẦN II. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình chóp tam giác \(S.ABC\) có đáy là tam giác đều cạnh \(2a\), \(SA \bot \left( {ABC} \right)\) và \(SA = a\sqrt 3 \). Gọi \(M\) là trung điểm cạnh \(BC\).
a) \(SA \bot BC\).
b) Độ dài trung tuyến \[AM = a\].
c) \(BC \bot \left( {SAM} \right)\).
d) Số đo góc giữa hai mặt phẳng \[\left( {SBC} \right)\] và \[\left( {ABC} \right)\] bằng \[60^\circ \].
Quảng cáo
Trả lời:
Do \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\).
Ta có \[AM\] là trung tuyến trong tam giác đều \[ABC\] cạnh \(2a\) nên \(AM = 2a \cdot \frac{{\sqrt 3 }}{2} = a\sqrt 3 \) và \[BC \bot AM\].
Kết hợp \[BC \bot SA\] suy ra \(BC \bot \left( {SAM} \right)\). Do đó, \[BC \bot SM\].
Hai mặt phẳng \[\left( {SBC} \right)\] và \[\left( {ABC} \right)\] cắt nhau theo giao tuyến \[BC\]. Hơn nữa ta có \[BC \bot SM\] và \[BC \bot AM\] nên \[\left( {\left( {SBC} \right)\,,\,\left( {ABC} \right)} \right) = \left( {SM\,,\,AM} \right) = \widehat {SMA}\].
Xét tam giác vuông \(SAM\) ta có \[\tan \widehat {SMA} = \frac{{SA}}{{MA}} = \frac{{a\sqrt 3 }}{{a\sqrt 3 }} = 1 \Rightarrow \widehat {SMA} = 45^\circ \].
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Do \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right).\)
Ta kẻ \(BH \bot AC,\,H \in \,AC\).
\( \Rightarrow \left\{ \begin{array}{l}BH \bot AC\\BH \bot SA\,\,\,\left( {{\rm{do}}\,\,SA \bot \left( {ABCD} \right)\,} \right)\end{array} \right. \Rightarrow BH \bot \left( {SAC} \right).\)
Suy ra \(SH\) là hình chiếu vuông góc của \(SB\) trên mặt phẳng \(\left( {SAC} \right)\).
Khi đó \(\left( {SB,\left( {SAC} \right)} \right) = \left( {SB,\,SH} \right) = \widehat {BSH}\).
Ta có: \(SB = \sqrt {S{A^2} + A{B^2}} = \frac{{4a\sqrt {15} }}{{15}},\,\,\frac{1}{{B{H^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{C^2}}} \Rightarrow BH = \frac{{2a\sqrt 5 }}{5}\).
Xét tam giác \(SHB\) vuông tại \(H\) ta có: \(\sin \widehat {BSH} = \frac{{BH}}{{SB}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {BSH} = 60^\circ \).
Vậy \(\left( {SB,\,\left( {SAC} \right)} \right) = 60^\circ \).
Đáp án: \[60\].
Lời giải
Theo bài ra, ta có \(AB = 5,A'B' = 2,CC' = 3\).
Có \(ABCD\) là hình vuông \( \Rightarrow CO = \frac{1}{2}AC = \frac{{5\sqrt 2 }}{2}\).
Có \(A'B'C'D'\) là hình vuông \( \Rightarrow C'O' = \frac{1}{2}A'C' = \frac{{2\sqrt 2 }}{2} = \sqrt 2 \).
Kẻ \(C'H \bot OC\) tại \(H\). Suy ra \(OHC'O'\) là hình chữ nhật.
\( \Rightarrow OH = O'C' = \sqrt 2 ,\,\,CH = OC - OH = \frac{{5\sqrt 2 }}{2} - \sqrt 2 = \frac{{3\sqrt 2 }}{2}\).
\( \Rightarrow OO' = C'H = \sqrt {C{{C'}^2} - C{H^2}} = \sqrt {{3^2} - {{\left( {\frac{{3\sqrt 2 }}{2}} \right)}^2}} = \frac{{3\sqrt 2 }}{2}\).
Diện tích đáy lớn là \(S = A{B^2} = {5^2} = 25\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).
Diện tích đáy bé là \(S' = A'{B'^2} = {2^2} = 4\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).
Thể tích khối chóp cụt là: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right) = \frac{1}{3} \cdot \frac{{3\sqrt 2 }}{2}\left( {25 + \sqrt {25 \cdot 4} + 4} \right) = \frac{{39\sqrt 2 }}{2}\,\,{\rm{(}}{{\rm{m}}^{\rm{3}}}{\rm{)}}\).
Số tiền để mua bê tông tươi làm chân tháp là:
\(\frac{{39\sqrt 2 }}{2} \cdot 1\,470\,000 \approx 40\,538\,432{\rm{\;}}\)(đồng) \( \approx 41\,\)(triệu đồng).
Đáp án: \[41\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải