Câu hỏi:

17/06/2025 8

PHẦN II. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hình chóp tam giác \(S.ABC\) có đáy là tam giác đều cạnh \(2a\), \(SA \bot \left( {ABC} \right)\) \(SA = a\sqrt 3 \). Gọi \(M\) là trung điểm cạnh \(BC\).

a) \(SA \bot BC\).

b) Độ dài trung tuyến \[AM = a\].

c) \(BC \bot \left( {SAM} \right)\).

d) Số đo góc giữa hai mặt phẳng \[\left( {SBC} \right)\]\[\left( {ABC} \right)\] bằng \[60^\circ \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C (ảnh 1)

Do \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\).

Ta có \[AM\] là trung tuyến trong tam giác đều \[ABC\] cạnh \(2a\) nên \(AM = 2a \cdot \frac{{\sqrt 3 }}{2} = a\sqrt 3 \) và \[BC \bot AM\].

Kết hợp \[BC \bot SA\] suy ra \(BC \bot \left( {SAM} \right)\). Do đó, \[BC \bot SM\].

Hai mặt phẳng \[\left( {SBC} \right)\] và \[\left( {ABC} \right)\] cắt nhau theo giao tuyến \[BC\]. Hơn nữa ta có \[BC \bot SM\] và \[BC \bot AM\] nên \[\left( {\left( {SBC} \right)\,,\,\left( {ABC} \right)} \right) = \left( {SM\,,\,AM} \right) = \widehat {SMA}\].

Xét tam giác vuông \(SAM\) ta có \[\tan \widehat {SMA} = \frac{{SA}}{{MA}} = \frac{{a\sqrt 3 }}{{a\sqrt 3 }} = 1 \Rightarrow \widehat {SMA} = 45^\circ \].

Đáp án:       a) Đúng,      b) Sai,         c) Đúng,      d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

C (ảnh 1)

Do \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right).\)

Ta kẻ \(BH \bot AC,\,H \in \,AC\).

\( \Rightarrow \left\{ \begin{array}{l}BH \bot AC\\BH \bot SA\,\,\,\left( {{\rm{do}}\,\,SA \bot \left( {ABCD} \right)\,} \right)\end{array} \right. \Rightarrow BH \bot \left( {SAC} \right).\)

Suy ra \(SH\) là hình chiếu vuông góc của \(SB\) trên mặt phẳng \(\left( {SAC} \right)\).

Khi đó \(\left( {SB,\left( {SAC} \right)} \right) = \left( {SB,\,SH} \right) = \widehat {BSH}\).

Ta có: \(SB = \sqrt {S{A^2} + A{B^2}}  = \frac{{4a\sqrt {15} }}{{15}},\,\,\frac{1}{{B{H^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{C^2}}} \Rightarrow BH = \frac{{2a\sqrt 5 }}{5}\).

Xét tam giác \(SHB\) vuông tại \(H\) ta có: \(\sin \widehat {BSH} = \frac{{BH}}{{SB}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {BSH} = 60^\circ \).

Vậy \(\left( {SB,\,\left( {SAC} \right)} \right) = 60^\circ \).

Đáp án: \[60\].

Lời giải

Minh họa khối chân tháp và đặt tên các điểm như hình dưới đây.

Số tiền để mua bê tông tươi làm chân tháp hết bao nhiêu triệu đồng (làm tròn kết quả đến hàng đơn vị)? (ảnh 2)

Theo bài ra, ta có \(AB = 5,A'B' = 2,CC' = 3\).

Có \(ABCD\) là hình vuông \( \Rightarrow CO = \frac{1}{2}AC = \frac{{5\sqrt 2 }}{2}\).

Có \(A'B'C'D'\) là hình vuông \( \Rightarrow C'O' = \frac{1}{2}A'C' = \frac{{2\sqrt 2 }}{2} = \sqrt 2 \).

Kẻ \(C'H \bot OC\) tại \(H\). Suy ra \(OHC'O'\) là hình chữ nhật.

\( \Rightarrow OH = O'C' = \sqrt 2 ,\,\,CH = OC - OH = \frac{{5\sqrt 2 }}{2} - \sqrt 2  = \frac{{3\sqrt 2 }}{2}\).

\( \Rightarrow OO' = C'H = \sqrt {C{{C'}^2} - C{H^2}}  = \sqrt {{3^2} - {{\left( {\frac{{3\sqrt 2 }}{2}} \right)}^2}}  = \frac{{3\sqrt 2 }}{2}\).

Diện tích đáy lớn là \(S = A{B^2} = {5^2} = 25\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Diện tích đáy bé là \(S' = A'{B'^2} = {2^2} = 4\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\).

Thể tích khối chóp cụt là: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'}  + S'} \right) = \frac{1}{3} \cdot \frac{{3\sqrt 2 }}{2}\left( {25 + \sqrt {25 \cdot 4}  + 4} \right) = \frac{{39\sqrt 2 }}{2}\,\,{\rm{(}}{{\rm{m}}^{\rm{3}}}{\rm{)}}\).

Số tiền để mua bê tông tươi làm chân tháp là:

\(\frac{{39\sqrt 2 }}{2} \cdot 1\,470\,000 \approx 40\,538\,432{\rm{\;}}\)(đồng) \( \approx 41\,\)(triệu đồng).

Đáp án: \[41\].

Câu 4

Một tấm bìa hình vuông có cạnh 50 cm. Người ta cắt bỏ đi ở mỗi góc tấm bìa một hình vuông cạnh 16 cm rồi gấp lại thành một cái hộp chữ nhật không có nắp. Thể tích khối hộp chữ nhật vừa tạo thành là     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình chóp \[S.ABC\], đáy ABC có \[AB = 10{\rm{ cm}}\], \[BC = 12{\rm{ cm}}\], \[AC = 14{\rm{ cm}}\], các mặt bên cùng tạo với mặt phẳng đáy các góc bằng nhau và đều bằng \[\alpha \] thỏa mãn \[\tan \alpha = 3\]. Thể tích khối chóp \[S.ABC\]     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho tứ diện đều \(ABCD\). Gọi \(\varphi \) là góc giữa đường thẳng \(AB\) và mặt phẳng \(\left( {BCD} \right)\). Tính \({\rm{cos}}\varphi \).      

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay