Câu hỏi:
17/06/2025 26PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong không gian với hệ tọa độ \[Oxyz\], cho ba vectơ \(\vec a = \left( {2; - 1;0} \right)\), \[\vec b = \left( { - 1; - 3;2} \right)\] và \(\vec c = \left( { - 2; - 4; - 3} \right)\), tọa độ của \[\vec u = 2\vec a - 3\vec b + \vec c\] là
Quảng cáo
Trả lời:
Ta có \[\vec u = 2\vec a - 3\vec b + \vec c = \left( {5\,;\,3\,;\, - 9} \right)\]. Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ \(6{\rm{h}}00\) đến \(6{\rm{h}}30\) máy bay \(A\) đi được quãng đường là: \(OA = 800 \cdot 0,5 = 400\) (km).
Vì \(OA\) tạo với ba trục tọa độ các góc bằng nhau nên suy ra \(OM = ON = OP\).
Đặt \(OM = ON = OP = x\)\( \Rightarrow OA = x\sqrt 3 = 400\)\( \Leftrightarrow x = \frac{{400\sqrt 3 }}{3}\)\( \Rightarrow A\left( {\frac{{400\sqrt 3 }}{3};\frac{{400\sqrt 3 }}{3};\frac{{400\sqrt 3 }}{3}} \right)\).
Tương tự, từ \(6{\rm{h}}10\) đến \(6{\rm{h}}30\) máy bay \(B\) đi được quãng đường là: \(OB = 900 \cdot \frac{1}{3} = 300\) (km).
Vì \(OB\) tạo với ba trục các góc bằng nhau nên suy ra \(B\left( { - 100\sqrt 3 ; - 100\sqrt 3 ;100\sqrt 3 } \right)\).
Vậy \(AB = \sqrt {33 \cdot {{10}^4}} \approx 574\) (km).
Đáp án: 574.
Lời giải
a) Tính được \[\overrightarrow {AB} = \left( {2;0;0} \right),\overrightarrow {AC} = \left( {0;3;0} \right),\overrightarrow {AB'} = \left( {0;0;4} \right) \Rightarrow AB = 2;AC = 3;AB' = 4\].
Có \[Oz \bot \left( {Oxy} \right)\] và \[AB' \subset Oz\], \[\left( {ABC} \right) \equiv \left( {Oxy} \right)\] nên \[AB' \bot \left( {ABC} \right)\].
Thể tích khối lăng trụ \[ABC.A'B'C'\] là:
\[V = d\left( {B',\left( {ABC} \right)} \right) \cdot {S_{\Delta ABC}} = AB' \cdot \frac{1}{2} \cdot AB \cdot AC = 4 \cdot \frac{1}{2} \cdot 2 \cdot 3 = 12\].
b) Gọi \[A'\left( {x;y;z} \right) \Rightarrow \overrightarrow {AA'} = \left( {x;y;z} \right)\].
Có \[\overrightarrow {BB'} = \left( { - 2;0;4} \right)\], mà \[\overrightarrow {BB'} = \overrightarrow {AA'} \], suy ra toạ độ điểm \[A'\] là \[\left( { - 2;0;4} \right)\].
Từ đó ta có \[\overrightarrow {A'B} = \left( {4;0; - 4} \right),\overrightarrow {A'C} = \left( {2;3; - 4} \right)\]. Vậy \[\overrightarrow u = \overrightarrow {A'B} + \overrightarrow {A'C} \] thì \[\overrightarrow u = \left( {6;3; - 8} \right)\].
c) Gọi \[C'\left( {a;b;c} \right) \Rightarrow \overrightarrow {CC'} = \left( {a;b - 3;c} \right)\].
Ta có \[\overrightarrow {BB'} = \overrightarrow {CC'} \], mà \[\overrightarrow {BB'} = \left( { - 2;0;4} \right)\], suy ra toạ độ điểm \[C'\] là \[\left( { - 2;3;4} \right)\].
d) Hình chiếu vuông góc của điểm \[B\] lên mặt phẳng \[\left( {Oyz} \right)\] là điểm \[A\] (do \[Ox \bot \left( {Oyz} \right)\]).
Do \[Ox\,{\rm{//}}\,A'B'\] mà \[Ox \bot \left( {Oyz} \right)\] nên \[A'B' \bot \left( {Oyz} \right)\], từ đó suy ra hình chiếu vuông góc của điểm \[A'\] lên mặt phẳng \[\left( {Oyz} \right)\] là điểm \[B'\].
Gọi \[{C_1}\left( {m;n;p} \right)\] là hình chiếu vuông góc của \[C'\] lên mặt phẳng \[\left( {Oyz} \right)\]\[ \Rightarrow {C_1}\left( {0;3;4} \right)\].
Vậy hình chiếu của hình lăng trụ \[ABC.A'B'C'\] lên mặt phẳng \[\left( {Oyz} \right)\]là hình chữ nhật \[AB'{C_1}C\].
Diện tích đa giác là: \[{S_{AB'{C_1}C}} = AB' \cdot AC = 4 \cdot 3 = 12\].
Đáp án: a) Sai, b) Đúng, c) Đúng, d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải