CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mẫu số liệu có giá trị đại diện

Nhóm

\(\left[ {1;5} \right)\)

\(\left[ {5;9} \right)\)

\(\left[ {9;13} \right)\)

\(\left[ {13;17} \right)\)

\(\left[ {17;21} \right)\)

Giá trị đại diện

3

7

11

15

19

Tần số

4

8

13

6

4

 

Có \(\overline x  = \frac{{4 \cdot 3 + 8 \cdot 7 + 13 \cdot 11 + 6 \cdot 15 + 4 \cdot 19}}{{35}} = \frac{{377}}{{35}} \approx 10,77\).

Phương sai của mẫu số liệu ghép nhóm là:

\({s^2} = \frac{{4 \cdot {3^2} + 8 \cdot {7^2} + 13 \cdot {{11}^2} + 6 \cdot {{15}^2} + 4 \cdot {{19}^2}}}{{35}} - {\left( {10,77} \right)^2} \approx 21,01\). Chọn A.

Lời giải

Dựa vào biểu đồ ta có bảng thống kê

Điểm

\(\left[ {4;5} \right)\)

\(\left[ {5;6} \right)\)

\(\left[ {6;7} \right)\)

\(\left[ {7;8} \right)\)

\(\left[ {8;9} \right)\)

\(\left[ {9;10} \right)\)

Số học sinh

25

50

102

202

112

10

Gọi \({x_1};{x_2};...;{x_{501}}\) là điểm của 501 học sinh được xếp theo thứ tự tăng dần.

Ta có \({Q_1} = \frac{{{x_{125}} + {x_{126}}}}{2}\) mà \({x_{125}};{x_{126}} \in \left[ {6;7} \right)\) nên nhóm chứa tứ phân vị thứ nhất là \(\left[ {6;7} \right)\).

Khi đó \({Q_1} = 6 + \frac{{\frac{{501}}{4} - 75}}{{102}} \cdot 1 = \frac{{883}}{{136}}\).

Ta có \({Q_3} = \frac{{{x_{375}} + {x_{376}}}}{2}\) mà \({x_{375}};{x_{376}} \in \left[ {7;8} \right)\) nên nhóm chứa tứ phân vị thứ ba là \(\left[ {7;8} \right)\).

Khi đó \({Q_3} = 7 + \frac{{\frac{{3 \cdot 501}}{4} - 177}}{{202}} \cdot 1 = \frac{{6451}}{{808}}\). Vậy \({\Delta _Q} = \frac{{6451}}{{808}} - \frac{{883}}{{136}} = \frac{{3617}}{{13736}} \approx 1,49\).

Đáp án: \(1,49\).

Câu 3

PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Số đặc trưng nào
không sử dụng thông tin giá trị của số liệu đầu tiên và giá trị của số liệu cuối cùng của mẫu số liệu không giảm?     

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Khảo sát số ghế trống tại một rạp chiếu phim trong 15 ngày, người ta thu được mẫu số liệu sau:

Số ghế trống

7

8

12

13

15

 

Số ngày

1

4

5

2

3

\(n = 15\)

a) Nếu thay đổi số ngày của mỗi số liệu số ghế trống đều bằng 3 thì khoảng biến thiên không thay đổi.

b) Có 25% giá trị của mẫu số liệu nằm giữa tứ phân vị thứ nhất và tứ phân vị thứ ba.

c) Số ngày có nhiều ghế trống nhất là 3 ngày.

d) Khảo sát thêm 2 ngày nữa thì thấy có 1 ngày có 6 ghế trống và 1 ngày có 16 ghế trống. Khi đó, trung vị của mẫu số liệu không thay đổi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP