Câu hỏi:

18/06/2025 84 Lưu

PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?

A. 15.                            
B. 4096.                        
C. 360.                                    
D. 720.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số các số tự nhiên thỏa yêu cầu là một chỉnh hợp chập 4 của 6 phần tử. Do đó, số các số tự nhiên cần tìm bằng \(A_6^4 = 360\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{1}{{458}}\).                                   
B. \(\frac{1}{{285}}\).      
C. \(\frac{1}{{870}}\).      
D. \(\frac{1}{{435}}\).

Lời giải

Gọi \(A\) là biến cố “thẻ thứ nhất trúng thưởng”; \(B\) là biến cố “thẻ thứ hai trúng thưởng”.

Khi đó \(A \cap B\) là biến cố “cả hai thẻ đều là hai thẻ trúng thưởng”.

Ta có \(P\left( A \right) = \frac{2}{{30}} = \frac{1}{{15}}\) và \(P\left( {B|A} \right) = \frac{1}{{29}}\).

Mà \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} \Rightarrow P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{1}{{25}} \cdot \frac{1}{{29}} = \frac{1}{{435}}\). Chọn D.

Câu 2

A. \(0,32\).                  
B. \(0,286\).                
C. \(0,228\).                         
D. \(0,443\).

Lời giải

Chọn 3 bạn trong 30 bạn có \(C_{30}^3\) cách chọn \( \Rightarrow n\left( \Omega  \right) = C_{30}^3\).

Gọi \(A\) là biến cố “Chọn 3 bạn nam” \( \Rightarrow n\left( A \right) = C_{16}^3 \Rightarrow P\left( A \right) = \frac{{C_{16}^3}}{{C_{30}^3}}\).

Gọi \(B\) là biến cố “Chọn 3 bạn nữ” \( \Rightarrow n\left( B \right) = C_{14}^3 \Rightarrow P\left( B \right) = \frac{{C_{14}^3}}{{C_{30}^3}}\).

Gọi \(C\) là biến cố “Chọn 3 bạn đều là nam hoặc nữ” \( \Rightarrow C = A \cup B\).

Do \(A\) và \(B\) xung khắc nên \(P\left( C \right) = P\left( A \right) + P\left( B \right) = \frac{{C_{16}^3}}{{C_{30}^3}} + \frac{{C_{14}^3}}{{C_{30}^3}} \approx 0,228\). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP