Câu hỏi:

18/06/2025 15

PHẦN II. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Một trường trung học phổ thông có 20 bạn học sinh tham dự tọa đàm về tháng Thanh niên do Quận Đoàn tổ chức. Vị trí ngồi của trường là khu vực gồm 4 hàng ghế, mỗi hàng có 6 ghế.

a) \(C_{20}^6\) cách sắp xếp 6 bạn ngồi vào hàng ghế đầu tiên.

b) Sau khi sắp xếp xong hàng ghế đầu tiên, có \(A_{14}^6\) cách sắp xếp 6 bạn ngồi vào hàng ghế thứ hai.

c) Sau khi sắp xếp xong hàng ghế thứ hai, có \(A_8^6\) cách sắp xếp 6 bạn ngồi vào hàng ghế thứ ba.

d) Sau khi sắp xếp xong hàng ghế thứ ba, có \(C_6^2\) cách sắp xếp các bạn còn lại ngồi vào hàng ghế cuối cùng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mỗi cách chọn 6 bạn trong 20 bạn để ngồi vào hàng ghế đầu tiên là một chỉnh hợp chập 6 của 20. Do đó có \(A_{20}^6\) cách xếp 6 bạn ngồi vào hàng ghế đầu tiên.

Mỗi cách chọn 6 bạn trong 14 bạn để ngồi vào hàng ghế thứ hai là một chỉnh hợp chập 6 của 14. Do đó có \(A_{14}^6\) cách xếp 6 bạn ngồi vào hàng ghế thứ hai sau khi sắp xếp xong hàng ghế đầu tiên.

Mỗi cách chọn 6 bạn trong 8 bạn để ngồi vào hàng ghế thứ ba là một chỉnh hợp chập 6 của 8. Do đó có \(A_8^6\) cách xếp 6 bạn ngồi vào hàng ghế thứ ba sau khi sắp xếp xong hai hàng ghế đầu.

Còn lại 2 bạn ngồi vào hàng ghế cuối cùng.

Mỗi cách chọn 2 ghế trong 6 ghế để xếp chỗ ngồi cho 2 bạn là một chỉnh hợp chập 2 của 6.

Vậy có \(A_6^2\) cách xếp 2 bạn còn lại ngồi vào hàng ghế cuối cùng.

Đáp án:       a) Sai,         b) Đúng,     c) Đúng,      d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn 2 trong 15 nam làm tổ trưởng và tổ phó có \(A_{15}^2\) cách.

Chọn 3 tổ viên, trong đó có nữ

+) Chọn 1 nữ và 2 nam có \(5 \cdot C_{13}^2\) cách,

+) Chọn 2 nữ và 1 nam có \(13 \cdot C_5^2\) cách,

+) Chọn 3 nữ có \(C_5^3\) cách.

Vậy có \(A_{15}^2\left( {5 \cdot C_{13}^2 + 13 \cdot C_5^2 + C_5^3} \right) = 111300\) cách.

Khi đó \(\left\{ \begin{array}{l}a = 1\\b = 3\end{array} \right. \Rightarrow T = ab + {a^2} = 4\).

Đáp án: \(4\).

Lời giải

Theo đề ta có \(P\left( {B|A} \right) = 0,9 \Rightarrow P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 0,9 = 0,1\).

Có \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = 0,8 \cdot 0,9 = 0,72\).

\(\overline A \overline B \) là biến cố “Cả hai thí nghiệm đều không thành công”.

Theo giả thiết có \(P\left( {\overline A } \right) = 1 - 0,8 = 0,2\) và \(P\left( {\overline B |\overline A } \right) = 1 - P\left( {B|\overline A } \right) = 1 - 0,5 = 0,5\).

Vậy xác suất để cả hai thí nghiệm không thành công là:

\(P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right) \cdot P\left( {\overline B |\overline A } \right) = 0,2 \cdot 0,5 = 0,1\).

Đáp án:       a) Đúng,      b) Sai,         c) Đúng,      d) Đúng.

Câu 3

PHẦN I. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay