Câu hỏi:

18/06/2025 53 Lưu

Một túi chứa 3 viên bi đỏ, 5 viên bi xanh và 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Tính xác suất để 3 viên bi được chọn không có đủ cả ba màu.     

A. \(\frac{{137}}{{182}}\).                          
B. \(\frac{{45}}{{182}}\). 
C. \(\frac{1}{{120}}\).      
D. \(\frac{1}{{360}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn \(A\) là biến cố “3 viên bi được chọn không có đủ cả ba màu”.

\(\overline A \) là biến cố “3 viên bi được chọn có đủ cả ba màu”.

Số phần tử của không gian mẫu: \(n\left( \Omega  \right) = C_{14}^3\).

Số kết quả thuận lợi cho biến cố \(\overline A \): \(n\left( {\overline A } \right) = 3 \cdot 5 \cdot 6 = 90\).

Khi đó \(P\left( {\overline A } \right) = \frac{{90}}{{C_{14}^3}} = \frac{{45}}{{182}}\)\( \Rightarrow P\left( A \right) = 1 - \frac{{45}}{{182}} = \frac{{137}}{{182}}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{1}{{458}}\).                                   
B. \(\frac{1}{{285}}\).      
C. \(\frac{1}{{870}}\).      
D. \(\frac{1}{{435}}\).

Lời giải

Gọi \(A\) là biến cố “thẻ thứ nhất trúng thưởng”; \(B\) là biến cố “thẻ thứ hai trúng thưởng”.

Khi đó \(A \cap B\) là biến cố “cả hai thẻ đều là hai thẻ trúng thưởng”.

Ta có \(P\left( A \right) = \frac{2}{{30}} = \frac{1}{{15}}\) và \(P\left( {B|A} \right) = \frac{1}{{29}}\).

Mà \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} \Rightarrow P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{1}{{25}} \cdot \frac{1}{{29}} = \frac{1}{{435}}\). Chọn D.

Câu 2

A. \(0,32\).                  
B. \(0,286\).                
C. \(0,228\).                         
D. \(0,443\).

Lời giải

Chọn 3 bạn trong 30 bạn có \(C_{30}^3\) cách chọn \( \Rightarrow n\left( \Omega  \right) = C_{30}^3\).

Gọi \(A\) là biến cố “Chọn 3 bạn nam” \( \Rightarrow n\left( A \right) = C_{16}^3 \Rightarrow P\left( A \right) = \frac{{C_{16}^3}}{{C_{30}^3}}\).

Gọi \(B\) là biến cố “Chọn 3 bạn nữ” \( \Rightarrow n\left( B \right) = C_{14}^3 \Rightarrow P\left( B \right) = \frac{{C_{14}^3}}{{C_{30}^3}}\).

Gọi \(C\) là biến cố “Chọn 3 bạn đều là nam hoặc nữ” \( \Rightarrow C = A \cup B\).

Do \(A\) và \(B\) xung khắc nên \(P\left( C \right) = P\left( A \right) + P\left( B \right) = \frac{{C_{16}^3}}{{C_{30}^3}} + \frac{{C_{14}^3}}{{C_{30}^3}} \approx 0,228\). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP