Cho một hộp đựng 20 tấm thẻ được đánh số từ 1 đến 20. Rút ngẫu nhiên một tấm thẻ trong hộp. Gọi \(A\) là biến cố rút được tấm thẻ ghi số chẵn lớn hơn 9. Gọi \(B\) là biến cố rút được tấm thẻ ghi số không nhỏ hơn 8 và không lớn hơn 15. Số phần tử của biến cố \(AB\) bằng bao nhiêu?
Câu hỏi trong đề: Đề ôn luyện Toán theo Chủ đề 8. Xác suất (Đề số 2) !!
Quảng cáo
Trả lời:
Ta có \(A = \left\{ {10;12;14;16;18;20} \right\}\), \(B = \left\{ {8;9;10;11;12;13;14;15} \right\}\).
Suy ra \(AB = \left\{ {10;12;14} \right\}\).
Vậy số phần tử của biến cố \(AB\) bằng 3. Chọn A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi \(A\) là biến cố “thẻ thứ nhất trúng thưởng”; \(B\) là biến cố “thẻ thứ hai trúng thưởng”.
Khi đó \(A \cap B\) là biến cố “cả hai thẻ đều là hai thẻ trúng thưởng”.
Ta có \(P\left( A \right) = \frac{2}{{30}} = \frac{1}{{15}}\) và \(P\left( {B|A} \right) = \frac{1}{{29}}\).
Mà \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} \Rightarrow P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{1}{{25}} \cdot \frac{1}{{29}} = \frac{1}{{435}}\). Chọn D.
Lời giải
Theo đề ta có \(P\left( {B|A} \right) = 0,9 \Rightarrow P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 0,9 = 0,1\).
Có \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = 0,8 \cdot 0,9 = 0,72\).
\(\overline A \overline B \) là biến cố “Cả hai thí nghiệm đều không thành công”.
Theo giả thiết có \(P\left( {\overline A } \right) = 1 - 0,8 = 0,2\) và \(P\left( {\overline B |\overline A } \right) = 1 - P\left( {B|\overline A } \right) = 1 - 0,5 = 0,5\).
Vậy xác suất để cả hai thí nghiệm không thành công là:
\(P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right) \cdot P\left( {\overline B |\overline A } \right) = 0,2 \cdot 0,5 = 0,1\).
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.