Câu hỏi:

18/06/2025 30

Cho một hộp đựng 20 tấm thẻ được đánh số từ 1 đến 20. Rút ngẫu nhiên một tấm thẻ trong hộp. Gọi \(A\) là biến cố rút được tấm thẻ ghi số chẵn lớn hơn 9. Gọi \(B\) là biến cố rút được tấm thẻ ghi số không nhỏ hơn 8 và không lớn hơn 15. Số phần tử của biến cố \(AB\) bằng bao nhiêu?     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(A = \left\{ {10;12;14;16;18;20} \right\}\), \(B = \left\{ {8;9;10;11;12;13;14;15} \right\}\).

Suy ra \(AB = \left\{ {10;12;14} \right\}\).

Vậy số phần tử của biến cố \(AB\) bằng 3. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề ta có \(P\left( {B|A} \right) = 0,9 \Rightarrow P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 0,9 = 0,1\).

Có \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = 0,8 \cdot 0,9 = 0,72\).

\(\overline A \overline B \) là biến cố “Cả hai thí nghiệm đều không thành công”.

Theo giả thiết có \(P\left( {\overline A } \right) = 1 - 0,8 = 0,2\) và \(P\left( {\overline B |\overline A } \right) = 1 - P\left( {B|\overline A } \right) = 1 - 0,5 = 0,5\).

Vậy xác suất để cả hai thí nghiệm không thành công là:

\(P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right) \cdot P\left( {\overline B |\overline A } \right) = 0,2 \cdot 0,5 = 0,1\).

Đáp án:       a) Đúng,      b) Sai,         c) Đúng,      d) Đúng.

Lời giải

Ta có \(n\left( \Omega  \right) = 6 \cdot 6 = 36\).

Gọi \(A\) là biến cố “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 chấm”.

\(A = \left\{ {\left( {1;3} \right);\left( {2;4} \right);\left( {3;5} \right);\left( {4;6} \right);\left( {3;1} \right);\left( {4;2} \right);\left( {5;3} \right);\left( {6;4} \right)} \right\} \Rightarrow n\left( A \right) = 8\).

Do đó \(P\left( A \right) = \frac{8}{{36}} = \frac{2}{9}\).

\(B\) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5”.

\[B = \left\{ {\left( {1;5} \right);\left( {2;5} \right);\left( {3;5} \right);\left( {4;5} \right);\left( {5;5} \right);\left( {6;5} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;6} \right)} \right\}\]\( \Rightarrow n\left( B \right) = 11\).

Do đó \(P\left( B \right) = \frac{{11}}{{36}}\).

\(C\) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc là một số chẵn”.

\(\overline C \) là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc là một số lẻ” \( \Rightarrow n\left( {\overline C } \right) = 3 \cdot 3 = 9\).

Suy ra \(P\left( {\overline C } \right) = \frac{1}{4} \Rightarrow P\left( C \right) = 1 - \frac{1}{4} = \frac{3}{4}\).

\(D\) là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ”.

\(\overline D \) là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số chẵn”.

Ta có tổng số chấm xuất hiện trên hai con xúc xắc là số chẵn khi và chỉ khi cả hai số đó đều là số lẻ hoặc đều là số chẵn.

Suy ra \(n\left( {\overline D } \right) = 2 \cdot 3 \cdot 3 = 18\). Do đó \(P\left( {\overline D } \right) = \frac{{18}}{{36}} = \frac{1}{2} \Rightarrow P\left( D \right) = \frac{1}{2}\).

Đáp án:       a) Đúng,      b) Đúng,     c) Sai,          d) Đúng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP