Câu hỏi:
18/06/2025 10Túi \(X\) chứa ba viên bi trắng và hai viên bi đỏ. Túi Y chứa một viên bi màu trắng và hai viên bi màu đỏ. Người ta chọn ngẫu nhiên mỗi túi 1 viên bi.
a) Gọi \(A\) là biến cố “Lấy được viên bi màu trắng từ túi X”. Khi đó \(P\left( A \right) = \frac{3}{5}\).
b) Gọi \(B\) là biến cố “Lấy được viên bi màu trắng từ túi Y”. Khi đó \(P\left( B \right) = \frac{1}{3}\).
c) Gọi \({X_2}\) là biến cố “Lấy được hai viên bi cùng màu đỏ”. Khi đó \(P\left( {{X_2}} \right) = \frac{4}{5}\).
d) Xác suất để lấy được hai viên bi cùng màu bằng \(P\left( X \right) = \frac{7}{{15}}\).
Câu hỏi trong đề: Đề ôn luyện Toán theo Chủ đề 8. Xác suất (Đề số 2) !!
Quảng cáo
Trả lời:
Ta có \(P\left( A \right) = \frac{3}{5};P\left( B \right) = \frac{1}{3}\).
Vì \(A,B\) là hai biến cố độc lập và \({X_1} = A \cap B\) nên \(P\left( {{X_1}} \right) = P\left( A \right) \cdot P\left( B \right) = \frac{3}{5} \cdot \frac{1}{3} = \frac{1}{5}\).
\({X_1}\) là biến cố “Lấy được hai viên bi cùng màu trắng”.
\({X_2}\) là biến cố “Lấy được hai viên bi cùng màu đỏ”.
Vì \(\overline A \) và \(\overline B \) là hai biến cố độc lập và \({X_2} = \overline A \cap \overline B \) nên \(P\left( {{X_2}} \right) = P\left( {\overline A } \right) \cdot P\left( {\overline B } \right) = \frac{2}{5} \cdot \frac{2}{3} = \frac{4}{{15}}\).
Biến cố để hai viên bi lấy ra cùng màu là \(X = {X_1} \cup {X_2}\).
Vì \({X_1}\) và \({X_2}\) là hai biến cố xung khắc, xác suất để hai viên bi lấy ra cùng màu là:
\(P\left( X \right) = P\left( {{X_1}} \right) + P\left( {{X_2}} \right) = \frac{1}{5} + \frac{4}{{15}} = \frac{7}{{15}}\).
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn 2 trong 15 nam làm tổ trưởng và tổ phó có \(A_{15}^2\) cách.
Chọn 3 tổ viên, trong đó có nữ
+) Chọn 1 nữ và 2 nam có \(5 \cdot C_{13}^2\) cách,
+) Chọn 2 nữ và 1 nam có \(13 \cdot C_5^2\) cách,
+) Chọn 3 nữ có \(C_5^3\) cách.
Vậy có \(A_{15}^2\left( {5 \cdot C_{13}^2 + 13 \cdot C_5^2 + C_5^3} \right) = 111300\) cách.
Khi đó \(\left\{ \begin{array}{l}a = 1\\b = 3\end{array} \right. \Rightarrow T = ab + {a^2} = 4\).
Đáp án: \(4\).
Lời giải
Theo đề ta có \(P\left( {B|A} \right) = 0,9 \Rightarrow P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 0,9 = 0,1\).
Có \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = 0,8 \cdot 0,9 = 0,72\).
\(\overline A \overline B \) là biến cố “Cả hai thí nghiệm đều không thành công”.
Theo giả thiết có \(P\left( {\overline A } \right) = 1 - 0,8 = 0,2\) và \(P\left( {\overline B |\overline A } \right) = 1 - P\left( {B|\overline A } \right) = 1 - 0,5 = 0,5\).
Vậy xác suất để cả hai thí nghiệm không thành công là:
\(P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right) \cdot P\left( {\overline B |\overline A } \right) = 0,2 \cdot 0,5 = 0,1\).
Đáp án: a) Đúng, b) Sai, c) Đúng, d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải