PHẦN III. Thí sinh trả lời từ câu 1 đến câu 6.
Một nhóm công nhân gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một tổ công tác sao cho phải có 1 tổ trưởng nam, 1 tổ phó nam và có ít nhất 1 nữ. Có \(\overline {1a1b00} \left( {a;b \in \mathbb{N}} \right)\) cách lập tổ công tác. Tính giá trị \(T = ab + {a^2}\).
PHẦN III. Thí sinh trả lời từ câu 1 đến câu 6.
Một nhóm công nhân gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một tổ công tác sao cho phải có 1 tổ trưởng nam, 1 tổ phó nam và có ít nhất 1 nữ. Có \(\overline {1a1b00} \left( {a;b \in \mathbb{N}} \right)\) cách lập tổ công tác. Tính giá trị \(T = ab + {a^2}\).
Câu hỏi trong đề: Đề ôn luyện Toán theo Chủ đề 8. Xác suất (Đề số 2) !!
Quảng cáo
Trả lời:

Chọn 2 trong 15 nam làm tổ trưởng và tổ phó có \(A_{15}^2\) cách.
Chọn 3 tổ viên, trong đó có nữ
+) Chọn 1 nữ và 2 nam có \(5 \cdot C_{13}^2\) cách,
+) Chọn 2 nữ và 1 nam có \(13 \cdot C_5^2\) cách,
+) Chọn 3 nữ có \(C_5^3\) cách.
Vậy có \(A_{15}^2\left( {5 \cdot C_{13}^2 + 13 \cdot C_5^2 + C_5^3} \right) = 111300\) cách.
Khi đó \(\left\{ \begin{array}{l}a = 1\\b = 3\end{array} \right. \Rightarrow T = ab + {a^2} = 4\).
Đáp án: \(4\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn 3 bạn trong 30 bạn có \(C_{30}^3\) cách chọn \( \Rightarrow n\left( \Omega \right) = C_{30}^3\).
Gọi \(A\) là biến cố “Chọn 3 bạn nam” \( \Rightarrow n\left( A \right) = C_{16}^3 \Rightarrow P\left( A \right) = \frac{{C_{16}^3}}{{C_{30}^3}}\).
Gọi \(B\) là biến cố “Chọn 3 bạn nữ” \( \Rightarrow n\left( B \right) = C_{14}^3 \Rightarrow P\left( B \right) = \frac{{C_{14}^3}}{{C_{30}^3}}\).
Gọi \(C\) là biến cố “Chọn 3 bạn đều là nam hoặc nữ” \( \Rightarrow C = A \cup B\).
Do \(A\) và \(B\) xung khắc nên \(P\left( C \right) = P\left( A \right) + P\left( B \right) = \frac{{C_{16}^3}}{{C_{30}^3}} + \frac{{C_{14}^3}}{{C_{30}^3}} \approx 0,228\). Chọn C.
Lời giải
Gọi \(A\) là biến cố “thẻ thứ nhất trúng thưởng”; \(B\) là biến cố “thẻ thứ hai trúng thưởng”.
Khi đó \(A \cap B\) là biến cố “cả hai thẻ đều là hai thẻ trúng thưởng”.
Ta có \(P\left( A \right) = \frac{2}{{30}} = \frac{1}{{15}}\) và \(P\left( {B|A} \right) = \frac{1}{{29}}\).
Mà \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} \Rightarrow P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{1}{{25}} \cdot \frac{1}{{29}} = \frac{1}{{435}}\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.