Câu hỏi:
30/06/2025 8Chọn cụm từ thích hợp điền vào chỗ trống: “Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì đường xiên nào có hình chiếu nhỏ hơn thì …”
Quảng cáo
Trả lời:
Đáp án đúng là: C
Trong hai đường xiên kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì đường xiên nào có hình chiếu nhỏ hơn thì nhỏ hơn.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: a) Đb) Đc) Đd) S
a) Vì \(MH\) là đường vuông góc và \(MA\) là đường xiên nên \(MA > MH\) (quan hệ đường vuông góc và đường xiên).
Do đó, ý a) đúng.
b) Vì \(\widehat {MBC}\) là góc ngoài của \(\Delta MHB\) suy ra \(\widehat {MBC} > \widehat {MHB} = 90^\circ \).
Xét \(\Delta MBC\) có \(\widehat {MBC}\) là góc tù nên suy ra \(MC > MB\) (quan hệ giữa góc và cạnh trong tam giác)
Do đó, ý b) đúng.
c) Mà \(HB\) và \(HC\) lần lượt là hình chiếu của \(MB\) và \(MC\) trên \(AC\).
Suy ra \(HB < HC\) (quan hệ giữa đường xiên và hình chiếu)
Vì \(AH = HB\) (gt) mà \(AH,HB\) lần lượt là hai hình chiếu của \(AM,BM\).
Suy ra \(MA = MB\) (quan hệ giữa đường xiên và hình chiếu).
Do đó, ý c) đúng.
d) Ta có \(MA = MB\) (cmt) và \(MC > MB\) (cmt) nên \(MC > MA\).
Do đó, ý d) sai.
Lời giải
Hướng dẫn giải
a) Ta có: \(f\left( x \right) + g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 + {x^3} - 5{x^4} + 3{x^2} - 3\)
\(f\left( x \right) + g\left( x \right) = \left( {{x^2} + 3{x^2}} \right) + \left( { - 5{x^4} - 5{x^4}} \right) + {x^3} - 2x + 3\)
\(f\left( x \right) + g\left( x \right) = - 10{x^4} + {x^3} + 4{x^2} - 2x + 3\).
b) Ta có: \(f\left( x \right) - g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 - \left( {{x^3} - 5{x^4} + 3{x^2} - 3} \right)\)
\(f\left( x \right) - g\left( x \right) = {x^2} - 2x - 5{x^4} + 6 - {x^3} + 5{x^4} - 3{x^2} + 3\)
\(f\left( x \right) - g\left( x \right) = \left( { - 5{x^4} + 5{x^4}} \right) + \left( {{x^2} - 3{x^2}} \right) - 2x - {x^3} + 9\)
\(f\left( x \right) - g\left( x \right) = - {x^3} - 2{x^2} - 2x + 9\).
Theo đề, ta có: \(h\left( x \right) + f\left( x \right) - g\left( x \right) = - 2{x^3} - x + 9\)
Hay \(h\left( x \right) + \left( { - {x^3} - 2{x^2} - 2x + 9} \right) = - 2{x^3} - x + 9\)
Suy ra \(h\left( x \right) = - 2{x^3} - x + 9 - \left( { - {x^3} - 2{x^2} - 2x + 9} \right)\)
\(h\left( x \right) = - 2{x^3} - x + 9 + {x^3} + 2{x^2} + 2x - 9\)
\(h\left( x \right) = \left( { - 2{x^3} + {x^3}} \right) + \left( { - x + 2x} \right) + 2{x^2} + 9 - 9\)
\(h\left( x \right) = - {x^3} + x + 2{x^2}\) hay \(h\left( x \right) = - {x^3} + 2{x^2} + x.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.