Nếu \[a < b\] thì 2a+1 ..... 2b+1. Dấu thích hợp điền vào ô trống là
A. \[ \ge \].
B. \[ \le \].
C. \[ < \].
</>
D. \[ > \].
Quảng cáo
Trả lời:
Đáp án đúng là: C
Nhân hai vế của bất đẳng thức \[a < b\] với 2, ta được: \[2a < 2b\].
Cộng 1 vào hai vế của bất đẳng thức \[2a < 2b\], ta được: \[2a + 1 < 2b + 1\].
Do đó dấu cần điền vào ô trống là \[ < \].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
1. Xét tam giác \[ABC\] vuông tại \(A\), ta có:
\(AB = BC\,.\,\cos C\) nên
\(BC = \frac{{AB}}{{\cos C}} = \frac{6}{{\frac{3}{5}}} = 10\,\,\left( {{\rm{cm}}} \right)\).

Áp dụng định lí Pythagore, ta có:
\(B{C^2} = A{B^2} + A{C^2}\)
\(A{C^2} = B{C^2} - A{B^2} = {10^2} - {6^2} = 64\), suy ra \(AC = 8\,\,{\rm{cm}}\).
Xét \(\Delta ABH\) và \(\Delta CBA\) có \(\widehat {AHB} = \widehat {BAC} = 90^\circ ;\,\,\widehat B\) chung.
Do đó .
Suy ra \(\frac{{AB}}{{BC}} = \frac{{BH}}{{AB}}\) hay \(A{B^2} = BH\,.\,BC\) nên \(BH = \frac{{A{B^2}}}{{BC}} = \frac{{{6^2}}}{{10}} = 3,6\,\,\left( {{\rm{cm}}} \right)\).
Vậy \(BC = 10\,\,{\rm{cm}},\,\,AC = 8\,\,{\rm{cm}},\,\,BH = 3,6\,\,{\rm{cm}}.\)
2. Quãng đường chiếc thuyền đi được giữa hai lần quan sát là \(CD.\)
Xét \(\Delta BAC\) vuông tại \(A\) có \(AC = 75\cot \widehat {BCA} = 75\cot 45^\circ = 75\,\,\left( {\rm{m}} \right)\).
Xét \(\Delta DAB\) vuông tại \(A\) có \(AD = 75\cot \widehat {BDA} = 75\cot 30^\circ = 75\sqrt 3 \,\,\left( {\rm{m}} \right)\).
Quãng đường chiếc thuyền đi được giữa hai lần quan sát là:
\(CD = AD - AC = 75\sqrt 3 - 75 \approx 55\,\,\left( {\rm{m}} \right)\).
Vậy chiếc thuyền đi được khoảng 55 mét giữa hai lần quan sát.
Lời giải
Hướng dẫn giải
Gọi \[x\,\,\left( {\rm{m}} \right)\] là chiều rộng của khu vườn lúc đầu \[\left( {x > 0} \right).\]
\[y\,\,\left( {\rm{m}} \right)\] là chiều rộng của khu vườn lúc đầu \[\left( {y > 0} \right).\]
Khu vườn lúc đầu có chu vi bằng \[68{\rm{ m}}\] nên \[2x + 2y = 68\] hay \[x + y = 34\,\,\,\,\left( 1 \right)\]
Chiều rộng khu vườn sau khi tăng là \[2x\,\,\left( {\rm{m}} \right)\]
Chiều dài khu vườn sau khi tăng là \[3y\,\,\left( {\rm{m}} \right)\]
Chu vi của khu vườn sau khi tăng là \[2 \cdot 2x + 2 \cdot 3y = 178\] hay \[2x + 3y = 89{\rm{ }}\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 34\\2x + 3y = 89\end{array} \right.\).
Từ phương trình thứ nhất ta có \(x = 34 - y\). Thế vào phương trình thứ hai, ta được
\(2\left( {34 - y} \right) + 3y = 89\), tức là \(2y = 42\), suy ra \(y = 21\,\,\left( {{\rm{TM}}} \right)\).
Từ đó \(x = 34 - 21 = 13\,\,\left( {{\rm{TM}}} \right)\).
Khi đó, chiều rộng lúc ban đầu là 13 m và chiều dài lúc ban đầu là 21 m.
Diện tích ban đầu của khu vườn là: \(13 \cdot 21 = 273\,\,\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Vậy diện tích ban đầu của khu vườn là \(273\,\,{{\rm{m}}^{\rm{2}}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\left( {x - 5} \right) + \left( {2y - 6} \right) = 0\].
B. \[5x - 3z = 6\].
C. \(5x - 8y = 0.\)
D. \[\left( {x - 2} \right)\left( {2y - 3} \right) = 3.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[c = b \cdot \tan B\].
B. \[c = b \cdot \cot C\].
C. \[c = b \cdot \tan C\].
D. \[c = b \cdot \sin B\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

