(2,0 điểm)
1) Cho hình vẽ dưới đây, tính độ dài các cạnh \(BH,CK,AK.\) (kết quả được làm tròn đến hàng phần mười).

2)

Quảng cáo
Trả lời:
Hướng dẫn giải
1. Xét tam giác \(ABH\) vuông tại \(H\), ta có: \(\sin A = \frac{{BH}}{{AH}}\) suy ra \(BH = AH.\sin A = 3.\sin 40^\circ \approx 1,9.\) Xét tam giác \(ACK\) vuông tại \(K\), ta có: \(AC = AB + BC = 3 + 2 = 5\). |
|
\(\sin A = \frac{{CK}}{{AC}}\)
suy ra \(CK = AC.\sin A = 5.\sin 40^\circ \approx 3,2\).Xét tam giác \(ACK\) vuông tại \(K\), ta có:
\(\tan A = \frac{{CK}}{{AK}}\) suy ra \(AK = \frac{{CK}}{{\tan A}} = \frac{{3,2}}{{\tan 40^\circ }} \approx 3,8.\)
Vậy \(BH \approx 1,9\), \(CK \approx 3,2\), \(AK \approx 3,8.\)
2. Xét tam giác \(ACD\) vuông tại \(D\), ta có:
\(\tan \widehat {ACD} = \frac{{AD}}{{CD}}\) suy ra \(AD = CD.\tan \widehat {ACD}\) hay \(AD = 5.\cos 38^\circ .\)
Ta có chiều cao của cây là \(AH\).
\(AH = AD + DH = 5.\tan 38^\circ + 1,64 \approx 5,55\,\,\left( {\rm{m}} \right){\rm{.}}\)
Vậy chiều cao của cây khoảng \(5,55{\rm{ m}}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có: \(\frac{{x - 2}}{{2017}} + \frac{{x - 3}}{{2018}} < \frac{{x - 4}}{{2019}} + \frac{{x - 5}}{{2020}}\)
\(\frac{{x - 2}}{{2017}} + \frac{{x - 3}}{{2018}} + 2 < \frac{{x - 4}}{{2019}} + \frac{{x - 5}}{{2020}} + 2\)
\(\left( {\frac{{x - 2}}{{2017}} + 1} \right) + \left( {\frac{{x - 3}}{{2018}} + 1} \right) < \left( {\frac{{x - 4}}{{2019}} + 1} \right) + \left( {\frac{{x - 5}}{{2020}} + 1} \right)\)
\(\frac{{x - 2015}}{{2017}} + \frac{{x - 2015}}{{2018}} < \frac{{x - 2015}}{{2019}} + \frac{{x - 2015}}{{2020}}\)
\(\frac{{x - 2015}}{{2017}} + \frac{{x - 2015}}{{2018}} - \frac{{x - 2015}}{{2019}} - \frac{{x - 2015}}{{2020}} < 0\)
\(\left( {x - 2015} \right)\left( {\frac{1}{{2017}} + \frac{1}{{2018}} - \frac{1}{{2019}} - \frac{1}{{2020}}} \right) < 0\)
Nhận thấy \(\frac{1}{{2017}} + \frac{1}{{2018}} - \frac{1}{{2019}} - \frac{1}{{2020}} > 0\).
Do đó, để thỏa mãn yêu cầu bài toán thì \(x - 2015 < 0\) suy ra \(x < 2015.\)
Vậy \(x < 2015.\)
Câu 2
A. \(\widehat B = 30^\circ .\)
B. \(\widehat B = 53^\circ 1'.\)
C. \(\widehat B = 35^\circ 1'.\)
Lời giải
Đáp án đúng là: B
Tam giác \(ABH\) vuông tại \(H\), ta có: \[\cos B = \frac{{BH}}{{AH}}\] hay \(\cos B = \frac{{1,5}}{{2,5}} = \frac{3}{5}\), suy ra \(\widehat B \approx 53^\circ 1'\).
Vậy chọn đáp án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[\left\{ \begin{array}{l}3x + 2y = 1\\x + y = 0\end{array} \right.\].
B. \[\left\{ \begin{array}{l}3x + 2y = 1\\x - y = 0\end{array} \right.\].
C. \[\left\{ \begin{array}{l}3x - 2y = 1\\x + y = 0\end{array} \right.\].
D. \[\left\{ \begin{array}{l}3x - 2y = 1\\x - y = 0\end{array} \right..\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(4,33\).
B. \({\rm{3,4}}{\rm{.}}\)
C. \({\rm{1,44}}{\rm{.}}\)
D. \(1,3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
