Cho ba số \(a,\,\,b,\,\,c\) và \(a \le b.\)
a) \(a + c \le b + c.\)
b) \(ac \ge bc\) với \(c > 0.\)
c) \( - \frac{a}{c} \ge - \frac{b}{c}\) với \(c < 0.\)
d) \({a^2} \le {b^2}.\)
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 9 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: a) Đ;b) S;c) S; d) S.
Với \(a \le b,\) ta có:
⦁ \(a + c \le b + c.\) Do đó ý a) là đúng.
⦁ \(ac \le bc\) với \(c > 0.\) Do đó ý b) là sai.
⦁ \(\frac{a}{c} \ge \frac{b}{c}\) với \(c < 0,\) nên \( - \frac{a}{c} \le - \frac{b}{c}.\) Do đó ý c) là sai.
⦁ \(a - b \le 0\)
Chẳng hạn nếu \(a + b \le 0\) thì \(\left( {a - b} \right)\left( {a + b} \right) \ge 0\) hay \({a^2} - {b^2} \ge 0\) nên \({a^2} \ge {b^2}.\)
Do đó ý d) là sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Xét tam giác \(OPQ\) vuông tại \(O\), ta có:
⦁ \(OQ = OQ \cdot \tan Q = 10 \cdot \tan 35^\circ \approx 7,00{\rm{\;(cm}});\)
⦁ \(OQ = PQ \cdot \cos Q\)
Suy ra \(PQ = \frac{{OQ}}{{\cos Q}} = \frac{{10}}{{\cos 35^\circ }} \approx 12,21{\rm{\;(cm)}}{\rm{.}}\)
Vậy \(OQ \approx 7,00{\rm{\;cm}},\,\,PQ \approx 12,21{\rm{\;cm}}.\)

2. Xét \(\Delta ABC\) vuông tại \(A,\) ta có:
\(BC = AC \cdot \cos C\), suy ra \(AC = \frac{{BC}}{{\cos C}} = \frac{{1,3}}{{\cos 66^\circ }} \approx 3,20\) (m).
Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(AB = BC \cdot \tan C = 1,3 \cdot \tan 66^\circ \approx 2,92\) (m).
Khi đầu \(A\) của thang bị trượt xuống \(40{\rm{\;cm}} = 0,4{\rm{\;m}}\) đến vị trí \(D\) thì \(DB = AB - AD \approx 2,92 - 0,4 = 2,52\) (m) và chiều dài thang là \(DE = AC \approx 3,20\) (m).
Xét \(\Delta BDE\) vuông tại \(B,\) ta có:
\(\sin \widehat {DEB} = \frac{{BD}}{{DE}} \approx \frac{{2,52}}{{3,2}} = 0,7875\), suy ra \(\widehat {DEB} \approx 51^\circ 57'.\)
Câu 2
A. \(\frac{{AH}}{{AC}}\).
B. \(\frac{{AH}}{{HC}}\).
C. \(\frac{{AB}}{{BC}}\).
D. \(\frac{{AC}}{{BC}}\).
Lời giải
Đáp án đúng là: D
|
Xét \(\Delta HAC\) vuông tại \(H\) ta có: \(\sin \widehat {HAC} = \frac{{HC}}{{AC}}\). Xét \(\Delta ABC\) vuông tại \(A\) ta có: \(\sin B = \frac{{AC}}{{BC}}\). Mà \(\widehat {HAC} + \widehat {C\,} = 90^\circ \) và \(\widehat {B\,} + \widehat {C\,} = 90^\circ \) nên \(\sin \widehat {HAC} = \sin B = \frac{{AC}}{{BC}}\) |
|
Vậy ta chọn phương án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\left( {x;\,\,2} \right)\) với \(x \in \mathbb{R}\).
B. \(\left( {2;\,\,y} \right)\) với \(y \in \mathbb{R}\).
C. \(\left( {x;\,\,0} \right)\) với \(x \in \mathbb{R}\).
D. \(\left( {0;\,\,y} \right)\) với \(y \in \mathbb{R}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

