Câu hỏi:

07/07/2025 37 Lưu

Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(A\) và \(SA \bot (ABC)\). Khi đó:

a) \((SAC) \bot (ABC)\).

b) Gọi \(H\) là hình chiếu của \(A\) trên \(BC\). Khi đó: \((SAH) \bot (SBC)\).

c) \(\left( {AB,SC} \right) = 60^\circ \)

d) Gọi \(K\) là hình chiếu của \(A\) trên \(SC\). Khi đó: \(\left( {(ABK),(SBC)} \right) = 60^\circ \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

C (ảnh 1)

a) \(\left\{ {\begin{array}{*{20}{l}}{SA \bot (ABC)}\\{(SAC) \supset SA}\end{array} \Rightarrow (SAC) \bot (ABC)} \right.\).

b) Có SA ^ BC (do SA ^ (ABC)) và AH ^ BC Þ BC ^ (SAH).

 \(\left\{ {\begin{array}{*{20}{l}}{BC \bot (SAH)}\\{(SBC) \supset BC}\end{array} \Rightarrow (SBC) \bot (SAH)} \right.\).

c) Có SA ^ AB, AB ^ AC Þ AB ^ (SAC) Þ AB ^ SC.

d) Hạ \(AK \bot SC\) và AB ^ SC, nên \(SC \bot (ABK)\).

Vậy ta có \(\left\{ {\begin{array}{*{20}{l}}{SC \bot (ABK)}\\{(SBC) \supset SC}\end{array} \Rightarrow (SBC) \bot (ABK)} \right.\).

Đáp án: a) Đúng;    b) Đúng;   c) Sai;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

A

Cho hình chóp S.ABCD có SA ^ (ABCD) và đáy ABCD là hình vuông tâm O. Góc giữa (SBD) và (ABCD) là  	 (ảnh 1)

Ta có \(\left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right)\)\[ \Rightarrow \left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\\BD = \left( {SBD} \right) \cap \left( {ABCD} \right)\end{array} \right.\].

Do đó góc giữa (SBD) và (ABCD) là góc giữa AC và SO là \(\widehat {SOA}\).

Câu 2

Lời giải

A

Vì AD // A'D' nên (AD, A'C') = (A'D', A'C').

Vì A'B'C'D' là hình vuông nên (A'D', A'C') = 45°.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP