Câu hỏi:
07/07/2025 25
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Gọi H là trung điểm cạnh AB. Khi đó:
a) Góc phẳng nhị diện [C, SH, B] là \(\widehat {CHB}\).
b) Góc phẳng nhị diện [C, SH, A] là \(\widehat {CHA}\).
c) Góc phẳng nhị diện [S, AB, C] là \(\widehat {SHC}\).
d) Số đo góc phẳng nhị diện [S, AB, C] bằng 30°.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Gọi H là trung điểm cạnh AB. Khi đó:
a) Góc phẳng nhị diện [C, SH, B] là \(\widehat {CHB}\).
b) Góc phẳng nhị diện [C, SH, A] là \(\widehat {CHA}\).
c) Góc phẳng nhị diện [S, AB, C] là \(\widehat {SHC}\).
d) Số đo góc phẳng nhị diện [S, AB, C] bằng 30°.
Quảng cáo
Trả lời:
a) DSAB đều, H là trung điểm cạnh AB Þ SH ^ AB.
Mà \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\SH \bot AB\end{array} \right.\) Þ SH ^ (ABC) Þ SH ^ HB.
Mà SH ^ CH (do SH ^ (ABC)) nên [B, SH, C] = \(\widehat {BHC}\).
b) Tương tự AH ^ SH, CH ^ SH nên [A, H, C] = \(\widehat {AHC}\).
c) Có SH ^ AB, CH ^ AB Þ [S, AB, C] là \(\widehat {SHC}\).
d) Mà SH ^ CH nên \(\widehat {SHC} = 90^\circ \).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
B
Gọi O là giao điểm của AC và BD.
Vì ABCD là hình vuông nên AO ^ BD mà SA ^ BD (SA ^ (ABCD)) Þ BD ^ (SAO)
Þ BD ^ SO.
Do đó [S, BD, A] = \(\widehat {SOA}\).
Xét DSOA có \(\tan \widehat {SOA} = \frac{{SA}}{{OA}} = \frac{{a\sqrt 6 }}{{a\sqrt 2 }} = \sqrt 3 \).
Vậy góc cần tìm bằng 60°.
Lời giải
a) Ta có: \(SA \bot (ABCD) \Rightarrow AB\) là hình chiếu của \(SB\) trên mặt phẳng \((ABCD)\).
Vì vậy \((SB,(ABCD)) = (SB,AB) = \widehat {SBA}\).
b) Tam giác \(SAB\) vuông tại \(A\) có: \(\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{a\sqrt 2 }}{a} = \sqrt 2 \Rightarrow \widehat {SBA} \approx 54,74^\circ \).
Vậy \((SB,(ABCD)) = \widehat {SBA} \approx 54,74^\circ \).
c) Ta có \(AC\) là hình chiếu của \(SC\) trên mặt phẳng \((ABCD)\) nên
\((SC,(ABCD)) = (SC,AC) = \widehat {SCA} = 45^\circ \)(do tam giác \(SAC\) vuông cân có \(SA = AC = a\sqrt 2 \)).
d) Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot AB}\\{BC \bot SA({\rm{ do }}SA \bot (ABCD))}\end{array} \Rightarrow BC \bot (SAB)} \right.\).
Suy ra \(SB\) là hình chiếu của \(SC\) trên mặt phẳng \((SAB)\).
Do vậy \((SC,(SAB)) = (SC,SB) = \widehat {CSB}\).
Tam giác \(SAB\) vuông tại \(A\) có: \(SB = \sqrt {S{A^2} + A{B^2}} = a\sqrt 3 \).
Tam giác \(SBC\) vuông tại \(B\) có:
\(\tan \widehat {CSB} = \frac{{BC}}{{SB}} = \frac{a}{{a\sqrt 3 }} = \frac{{\sqrt 3 }}{3} \Rightarrow \widehat {CSB} = 30^\circ \).
Vậy \((SC,(SAB)) = \widehat {CSB} = 30^\circ \).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.