Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = a, AD = 2a, cạnh bên SA ^ (ABCD) và \(SA = a\sqrt 2 \). Góc giữa đường thẳng SC và mặt phẳng (SAD) bằng
Quảng cáo
Trả lời:
A
Gọi H là trung điểm của AD Þ AH = HD = a.
Vì BC // AH và BC = AH nên ABCH là hình bình hành mà \(\widehat A = 90^\circ \) nên ABCH là hình chữ nhật.
Suy ra CH ^ AD mà CH ^ SA (SA ^ (ABCD)) Þ CH ^ (SAD).
Khi đó SH là hình chiếu của SC lên mặt phẳng (SAD).
Suy ra góc giữa SC và (SAD) là góc \(\widehat {CSH}\).
Tam giác SHC vuông tại H và có CH = a, \(SH = \sqrt {S{A^2} + A{H^2}} = a\sqrt 3 \).
Ta có \(\tan \widehat {CSH} = \frac{{CH}}{{SH}} = \frac{a}{{\sqrt {{a^2} + 2{a^2}} }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {CSH} = 30^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
D
Gọi O là tâm của hình vuông, hạ MH ^ BD.
Ta có SO ^ (ABCD) và \(SO = \sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{2}\).
Gọi M là trung điểm của OD ta có MH // SO nên H là hình chiếu của M lên mặt phẳng (ABCD) và \(MH = \frac{1}{2}SO = \frac{{a\sqrt 2 }}{4}\).
Do đó góc giữa đường thẳng BM và mặt phẳng (ABCD) là \(\widehat {MBH}\).
Khi đó ta có \(\tan \widehat {MBH} = \frac{{MH}}{{BH}} = \frac{{a\sqrt 2 }}{4}:\frac{{3a\sqrt 2 }}{4} = \frac{1}{3}\).
Lời giải
a) DSAB đều, H là trung điểm cạnh AB Þ SH ^ AB.
Mà \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\SH \bot AB\end{array} \right.\) Þ SH ^ (ABC) Þ SH ^ HB.
Mà SH ^ CH (do SH ^ (ABC)) nên [B, SH, C] = \(\widehat {BHC}\).
b) Tương tự AH ^ SH, CH ^ SH nên [A, H, C] = \(\widehat {AHC}\).
c) Có SH ^ AB, CH ^ AB Þ [S, AB, C] là \(\widehat {SHC}\).
d) Mà SH ^ CH nên \(\widehat {SHC} = 90^\circ \).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.