Câu hỏi:

07/07/2025 18

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), \(SA = a\sqrt 2 \), tam giác ABC vuông cân tại B và \(AB = a\sqrt 2 \)(tham khảo hình vẽ). Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 
Góc giữa đường thẳng SB và mặt phẳng (ABC) bằng  	 (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

B

Vì SA ^ (ABC) nên AB là hình chiếu của SB trên mặt phẳng (ABC).

Do đó (SB, (ABC)) = (SB, AB) = \(\widehat {SBA}\).

Xét DSAB vuông tại A, có SA = AB = \(a\sqrt 2 \) Þ DSAB vuông cân tại A Þ \(\widehat {SBA} = 45^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

D (ảnh 1)

a) DSAB đều, H là trung điểm cạnh AB Þ SH ^ AB.

\(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\SH \bot AB\end{array} \right.\) Þ SH ^ (ABC) Þ SH ^ HB.

Mà SH ^ CH (do SH ^ (ABC)) nên [B, SH, C] = \(\widehat {BHC}\).

b) Tương tự AH ^ SH, CH ^ SH nên [A, H, C] = \(\widehat {AHC}\).

c) Có SH ^ AB, CH ^ AB Þ [S, AB, C] là \(\widehat {SHC}\).

d) Mà SH ^ CH nên \(\widehat {SHC} = 90^\circ \).

Đáp án: a) Đúng;    b) Đúng;   c) Đúng;   d) Sai.

Câu 2

Lời giải

D

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a.Gọi M là trung điểm của SD. Tan của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng (ảnh 2)

Gọi O là tâm của hình vuông, hạ MH ^ BD.

Ta có SO ^ (ABCD) và \(SO = \sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{2}\).

Gọi M là trung điểm của OD ta có MH // SO nên H là hình chiếu của M lên mặt phẳng (ABCD) và \(MH = \frac{1}{2}SO = \frac{{a\sqrt 2 }}{4}\).

Do đó góc giữa đường thẳng BM và mặt phẳng (ABCD) là \(\widehat {MBH}\).

Khi đó ta có \(\tan \widehat {MBH} = \frac{{MH}}{{BH}} = \frac{{a\sqrt 2 }}{4}:\frac{{3a\sqrt 2 }}{4} = \frac{1}{3}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP