Câu hỏi:

07/07/2025 23 Lưu

Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AB = BC = a, \(SA = a\sqrt 3 \), SA ^ (ABC). Góc nhị diện [S, BC, A] có số đo bằng 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

B

 Góc nhị diện [S, BC, A] có số đo bằng   (ảnh 1)

Vì BC ^ BA và BC ^ SA Þ BC ^ (SAB) Þ BC ^ SB.

Suy ra \(\widehat {SBA}\) là góc phẳng nhị diện của góc nhị diện [S, BC, A].

Xét DSAB vuông tại B, \(\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \) \( \Rightarrow \widehat {SBA} = 60^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

D

Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a.Gọi M là trung điểm của SD. Tan của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng (ảnh 2)

Gọi O là tâm của hình vuông, hạ MH ^ BD.

Ta có SO ^ (ABCD) và \(SO = \sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{2}\).

Gọi M là trung điểm của OD ta có MH // SO nên H là hình chiếu của M lên mặt phẳng (ABCD) và \(MH = \frac{1}{2}SO = \frac{{a\sqrt 2 }}{4}\).

Do đó góc giữa đường thẳng BM và mặt phẳng (ABCD) là \(\widehat {MBH}\).

Khi đó ta có \(\tan \widehat {MBH} = \frac{{MH}}{{BH}} = \frac{{a\sqrt 2 }}{4}:\frac{{3a\sqrt 2 }}{4} = \frac{1}{3}\).

Câu 2

Lời giải

B

Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh 2a, \(SA = a\sqrt 6 \) và vuông góc với đáy. Số đo của góc nhị diện [S, BD, A].  	 (ảnh 1)

Gọi O là giao điểm của AC và BD.

Vì ABCD là hình vuông nên AO ^ BD mà SA ^ BD (SA ^ (ABCD)) Þ BD ^ (SAO)

Þ BD ^ SO.

Do đó [S, BD, A] = \(\widehat {SOA}\).

Xét DSOA có \(\tan \widehat {SOA} = \frac{{SA}}{{OA}} = \frac{{a\sqrt 6 }}{{a\sqrt 2 }} = \sqrt 3 \).

Vậy góc cần tìm bằng 60°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP