Câu hỏi:

13/07/2024 41,316

Hình thang ABCD (AB // CD) có Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Chứng minh rằng ABCD là hình thang cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Gọi E là giao điểm của AC và BD.

Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇒ ΔEDC cân tại E ⇒ ED = EC (1)

+ AB//CD ⇒ Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 (Các cặp góc so le trong)

Mà Giải bài 17 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔEAB cân tại E ⇒ EA = EB (2)

Từ (1) và (2) suy ra: EA + EC = EB + ED hay AC = BD.

Vậy hình thang ABCD có hai đường chéo AC = BD nên là hình thang cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải bài 15 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 15 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà hai góc ở vị trí đồng vị ⇒ DE // BC

⇒ Tứ giác DECB là hình thang.

Mà hai góc ở đáy B và C bằng nhau nên hình thang DECB là hình thang cân.

b)

Giải bài 15 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Lời giải

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

- Chứng minh tứ giác BCDE là hình thang cân:

+ ΔABC cân tại A Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

BD là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

CE là phân giác của Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Xét ΔAEC và ΔADB có:

Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔAEC = ΔADB

⇒ AE = AD

Vậy tam giác ABC cân tại A có AE = AD

Theo kết quả bài 15a) suy ra BCDE là hình thang cân.

- Chứng minh ED = EB.

ED // BC ⇒ Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 (Hai góc so le trong)

Mà Giải bài 16 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8 ⇒ ΔEDB cân tại E ⇒ ED = EB.

Vậy ta có EBCD là hình thang cân có đáy nhỏ bằng cạnh bên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP