A. TRẮC NGHIỆM (7,0 điểm)
Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn
Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.
A. TRẮC NGHIỆM (7,0 điểm)
Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn
Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.
Phân số cùng biểu diễn số hữu tỉ \(\frac{1}{3}\) là
Quảng cáo
Trả lời:
Đáp án đúng là: B
Nhận thấy,
• \(\frac{2}{4} = \frac{{2:2}}{{4:2}} = \frac{1}{2}\).
• \(\frac{6}{{18}} = \frac{{6:6}}{{18:6}} = \frac{1}{3}\).
• \(\frac{{ - 3}}{9} = \frac{{ - 3:3}}{{9:3}} = \frac{{ - 1}}{3}.\)
Do đó, phân số cùng biểu diễn số hữu tỉ \(\frac{1}{3}\) là \(\frac{6}{{18}}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Có \(\widehat A = \widehat B = 90^\circ \) mà hai góc ở vị trí đồng vị nên \(AD\parallel BC\).
Do đó, \(\widehat {DCB} = \widehat D = 50^\circ \) (so le trong).
Vậy chọn đáp án B.
Lời giải
Hướng dẫn giải
a) Xét \(\Delta ABH\) và \(\Delta ACK\), có:
\(AB = AC\) (\(\Delta ABC\) cân tại \(A\))
\(\widehat {BHA} = \widehat {CKA} = 90^\circ \) (giả thiết)
\(\widehat {KAC} = \widehat {HAB}\) \(\left( { = \widehat {BAC}} \right)\)
Do đó, \(\Delta ABH = \Delta ACK\) (ch – gn).
b) Từ câu a), ta có: \(\Delta ABH = \Delta ACK\) nên \(\widehat {ABH} = \widehat {ACK}\) (hai góc tương ứng)
Lại có, \(\widehat {ABC} = \widehat {ACB}\) (\(\Delta ABC\) cân tại \(A\)).
Ta có: \(\widehat {ABC} = \widehat {ABH} + \widehat {HBC}\)
\(\widehat {ACB} = \widehat {ACK} + \widehat {KCB}\)
Suy ra \(\widehat {HBC} = \widehat {KCB}\) nên \(\Delta BIC\) cân tại \(I\) nên \(IB = IC.\)
c) Từ a) ta có \(\Delta ABH = \Delta ACK\) (ch – gn) nên \(AH = AK\) (hai cạnh tương ứng)
Xét \(\Delta KAI\) và \(\Delta HAI\) có:
\(AI\) chung (giả thiết)
\(AH = AK\) (cmt)
Suy ra \(\Delta KAI = \Delta HAI\) (ch – cgv)
Do đó, \(\widehat {KAI} = \widehat {HAI}\) (hai góc tương ứng)
Suy ra \(AI\) là tia phân giác của \(\widehat {BAC}\) (1)
Xét \(\Delta ABM\) và \(\Delta ACM,\) có:
\(AB = AC\) (\(\Delta ABC\) cân tại \(A\))
\(\widehat {ABC} = \widehat {ACB}\)(\(\Delta ABC\) cân tại \(A\))
\(AM = MB\) (gt)
Do đó, \(\Delta ABM = \Delta ACM\) (c.g.c)
Suy ra \(\widehat {BAM} = \widehat {CAM}\) (hai góc tương ứng)
Suy ra \(AM\) là tia phân giác của \(\widehat {BAC}\) (2)
Từ (1) và (2) suy ra \(A,I,M\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.