Biểu đồ dưới đây thể hiện các loại phương tiện di chuyển của \(600\) học sinh tại một trường THCS như sau:

a) Phương tiện được học sinh sử dụng nhiều nhất là xe điện.
b) Học sinh đi bộ đến trường chiếm \(18\% .\)
c) Có \(108\) học sinh đi xe đạp đến trường.
d) Số học sinh đi xe điện, đi xe buýt và đi bộ đến trường lần lượt là \(270\) học sinh; \(150\) học sinh và \(90\) học sinh.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Đ b) S c) Đ d) S
Quan sát biểu đồ quạt tròn, nhận thấy:
• Phương tiện được học sinh sử dụng nhiều nhất là xe điện (chiếm \(45\% \)). Do đó, ý a) đúng.
• Học sinh đi bộ đến trường chiếm \(12\% \). Do đó, ý b) sai.
• Học sinh đi xe đạp đến trường chiếm \(18\% \), tức là có \(600.18\% = 108\) (học sinh). Do đó, ý c) là đúng.
• Học sinh đi xe buýt chiếm \(25\% \). Do đó, số học sinh đi xe buýt đến trường là:
\(600.25\% = 150\) (học sinh)
Số học sinh đi xe điện chiếm \(45\% \). Do đó, số học sinh đi xe điện đến trường là:
\(600.45\% = 270\) (học sinh)
Số học sinh đi bộ đến trường là: \(600 - \left( {150 + 270 + 108} \right) = 72\) (học sinh)
Do đó, số học sinh đi xe điện, đi xe buýt và đi bộ đến trường lần lượt là \(270\) học sinh; \(150\) học sinh và \(72\) học sinh. Vậy nên ý d) là sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(40^\circ .\)
B. \(50^\circ .\)
C. \(90^\circ .\)
D. \(130^\circ \).
Lời giải
Đáp án đúng là: B
Có \(\widehat A = \widehat B = 90^\circ \) mà hai góc ở vị trí đồng vị nên \(AD\parallel BC\).
Do đó, \(\widehat {DCB} = \widehat D = 50^\circ \) (so le trong).
Vậy chọn đáp án B.
Lời giải
Hướng dẫn giải

a) Xét \(\Delta ABH\) và \(\Delta ACK\), có:
\(AB = AC\) (\(\Delta ABC\) cân tại \(A\))
\(\widehat {BHA} = \widehat {CKA} = 90^\circ \) (giả thiết)
\(\widehat {KAC} = \widehat {HAB}\) \(\left( { = \widehat {BAC}} \right)\)
Do đó, \(\Delta ABH = \Delta ACK\) (ch – gn).
b) Từ câu a), ta có: \(\Delta ABH = \Delta ACK\) nên \(\widehat {ABH} = \widehat {ACK}\) (hai góc tương ứng)
Lại có, \(\widehat {ABC} = \widehat {ACB}\) (\(\Delta ABC\) cân tại \(A\)).
Ta có: \(\widehat {ABC} = \widehat {ABH} + \widehat {HBC}\)
\(\widehat {ACB} = \widehat {ACK} + \widehat {KCB}\)
Suy ra \(\widehat {HBC} = \widehat {KCB}\) nên \(\Delta BIC\) cân tại \(I\) nên \(IB = IC.\)
c) Từ a) ta có \(\Delta ABH = \Delta ACK\) (ch – gn) nên \(AH = AK\) (hai cạnh tương ứng)
Xét \(\Delta KAI\) và \(\Delta HAI\) có:
\(AI\) chung (giả thiết)
\(AH = AK\) (cmt)
Suy ra \(\Delta KAI = \Delta HAI\) (ch – cgv)
Do đó, \(\widehat {KAI} = \widehat {HAI}\) (hai góc tương ứng)
Suy ra \(AI\) là tia phân giác của \(\widehat {BAC}\) (1)
Xét \(\Delta ABM\) và \(\Delta ACM,\) có:
\(AB = AC\) (\(\Delta ABC\) cân tại \(A\))
\(\widehat {ABC} = \widehat {ACB}\)(\(\Delta ABC\) cân tại \(A\))
\(AM = MB\) (gt)
Do đó, \(\Delta ABM = \Delta ACM\) (c.g.c)
Suy ra \(\widehat {BAM} = \widehat {CAM}\) (hai góc tương ứng)
Suy ra \(AM\) là tia phân giác của \(\widehat {BAC}\) (2)
Từ (1) và (2) suy ra \(A,I,M\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{2}{4}.\)
B. \(\frac{6}{{18}}.\)
C. \(\frac{2}{9}.\)
D. \(\frac{{ - 3}}{9}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


