(1,5 điểm) Cho \(\Delta ABC\) cân tại \(A,\left( {\widehat A < 90^\circ } \right)\). Kẻ \(BH\) vuông góc với \(AC\) tại \(H\) và \(CK\) vuông góc với \(AB\) tại \(K.\) Biết \(BH\) và \(CK\) cắt nhau tại \(I.\)
a) Chứng minh rằng \(\Delta ABH = \Delta ACK.\)
b) Chứng minh rằng \(IB = IC.\)
c) Gọi \(M\) là trung điểm của \(BC.\) Chứng minh rằng ba điểm \(A,I,M\) thẳng hàng.
Quảng cáo
Trả lời:

Hướng dẫn giải
a) Xét \(\Delta ABH\) và \(\Delta ACK\), có:
\(AB = AC\) (\(\Delta ABC\) cân tại \(A\))
\(\widehat {BHA} = \widehat {CKA} = 90^\circ \) (giả thiết)
\(\widehat {KAC} = \widehat {HAB}\) \(\left( { = \widehat {BAC}} \right)\)
Do đó, \(\Delta ABH = \Delta ACK\) (ch – gn).
b) Từ câu a), ta có: \(\Delta ABH = \Delta ACK\) nên \(\widehat {ABH} = \widehat {ACK}\) (hai góc tương ứng)
Lại có, \(\widehat {ABC} = \widehat {ACB}\) (\(\Delta ABC\) cân tại \(A\)).
Ta có: \(\widehat {ABC} = \widehat {ABH} + \widehat {HBC}\)
\(\widehat {ACB} = \widehat {ACK} + \widehat {KCB}\)
Suy ra \(\widehat {HBC} = \widehat {KCB}\) nên \(\Delta BIC\) cân tại \(I\) nên \(IB = IC.\)
c) Từ a) ta có \(\Delta ABH = \Delta ACK\) (ch – gn) nên \(AH = AK\) (hai cạnh tương ứng)
Xét \(\Delta KAI\) và \(\Delta HAI\) có:
\(AI\) chung (giả thiết)
\(AH = AK\) (cmt)
Suy ra \(\Delta KAI = \Delta HAI\) (ch – cgv)
Do đó, \(\widehat {KAI} = \widehat {HAI}\) (hai góc tương ứng)
Suy ra \(AI\) là tia phân giác của \(\widehat {BAC}\) (1)
Xét \(\Delta ABM\) và \(\Delta ACM,\) có:
\(AB = AC\) (\(\Delta ABC\) cân tại \(A\))
\(\widehat {ABC} = \widehat {ACB}\)(\(\Delta ABC\) cân tại \(A\))
\(AM = MB\) (gt)
Do đó, \(\Delta ABM = \Delta ACM\) (c.g.c)
Suy ra \(\widehat {BAM} = \widehat {CAM}\) (hai góc tương ứng)
Suy ra \(AM\) là tia phân giác của \(\widehat {BAC}\) (2)
Từ (1) và (2) suy ra \(A,I,M\) thẳng hàng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(40^\circ .\)
B. \(50^\circ .\)
C. \(90^\circ .\)
D. \(130^\circ \).
Lời giải
Đáp án đúng là: B
Có \(\widehat A = \widehat B = 90^\circ \) mà hai góc ở vị trí đồng vị nên \(AD\parallel BC\).
Do đó, \(\widehat {DCB} = \widehat D = 50^\circ \) (so le trong).
Vậy chọn đáp án B.
Câu 2
A. \(\Delta ABC = \Delta MNP.\)
Lời giải
Đáp án đúng là: A
Xét \(\Delta ABC\) và \(\Delta MNP\) có:
\(AB = MN\)
\(\widehat {ABC} = \widehat {MNP}\)
\(BC = PN\)
Do đó, \(\Delta ABC = \Delta MNP\) (c.g.c)
Câu 3
A. \(\frac{2}{4}.\)
B. \(\frac{6}{{18}}.\)
C. \(\frac{2}{9}.\)
D. \(\frac{{ - 3}}{9}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.