Câu hỏi:

17/07/2025 6 Lưu

A. TRẮC NGHIỆM (7,0 điểm)

Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn

Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.

Cho các số \(\frac{2}{3};{\rm{ }}\frac{{ - 6}}{7};{\rm{ }}\frac{0}{{ - 11}};{\rm{ }}\frac{{ - 4}}{{ - 9}};{\rm{ }}\frac{3}{{ - 2}};{\rm{ }} - 5\) có bao nhiêu số hữu tỉ âm?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Nhận thấy, \(\frac{0}{{ - 11}} = 0\) nên không là số hữu tỉ âm cũng không số hữu tỉ dương.

Các số hữu tỉ âm trong các số trên là: \(\frac{{ - 6}}{7};{\rm{ }}\frac{3}{{ - 2}};{\rm{ }} - 5\).

Do đó, có 3 số hữu tỉ âm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \({\left( { - \frac{1}{2}} \right)^2}.\frac{4}{{11}} + \frac{7}{{11}}.{\left( { - \frac{1}{2}} \right)^2}\)

\( = {\left( { - \frac{1}{2}} \right)^2}.\left( {\frac{4}{{11}} + \frac{7}{{11}}} \right)\)

\( = \frac{1}{4}.\frac{{11}}{{11}}\)

\( = \frac{1}{4}.1\)

\( = \frac{1}{4}\).

b) \({\left( { - 2} \right)^3} + 1\frac{1}{3}\left| {2,5} \right| - \sqrt {49} :\frac{7}{5}\)

\( = {\left( { - 2} \right)^3} + \frac{4}{3}.2,5 - \sqrt {{7^2}} :\frac{7}{5}\)

\( = 8 + \frac{4}{3}.\frac{5}{2} - 7.\frac{5}{7}\)

\( = 8 + \frac{{10}}{3} - 5\)

\( = 3 + \frac{{10}}{3}\)

\( = \frac{{19}}{3}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đb) Đc) Đd) S

Nhận thấy,

• \(\widehat {ABy'}\) và \(\widehat {y'BC}\) là hai góc kề nhau. Do đó, ý a) đúng.

• Vì \(Ax\parallel yy'\) nên \(\widehat {xAB} = \widehat {BAy'} = 40^\circ \) (so le trong). Do đó, ý b) đúng.

• Lại có \(\widehat {ABy'} + \widehat {y'BC} = \widehat {ABC}\) suy ra \(\widehat {y'BC} = \widehat {ABC} - \widehat {ABy'} = 105^\circ - 40^\circ = 65^\circ \).

Suy ra \(\widehat {CBy'} = \widehat {BCz} = 65^\circ \).

Mà hai góc ở vị trí so le trong nên \(yy'\parallel Cx.\) Do đó, ý c) đúng.

• Có \(\widehat {CBy'}\) và \(\widehat {CBy}\) là hai góc kề bù nên \(\widehat {CBy'} + \widehat {CBy} = 180^\circ \), suy ra \(\widehat {CBy} = 180^\circ - \widehat {CBy'} = 115^\circ \).

Lại có \(BD\) là tia phân giác của \(\widehat {CBy}\) nên \(\widehat {CBD} = \widehat {DBy} = \widehat {\frac{{CBy}}{2}} = \frac{{115^\circ }}{2} = 57,5^\circ \).

Vì \(yy'\parallel Cx\) nên \(\widehat {CBy} = \widehat {CDB} = 57,5^\circ \) (so le trong)

Do đó, \(\widehat {CDB} < 60^\circ \).

Vậy ý d) là sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP