Cho hình chóp tứ giác đều S.ABCD có độ dài tất cả các cạnh bằng a. Tính các tích vô hướng sau:
a) \[\overrightarrow {AS} \].\[\overrightarrow {BC} \]
b) \[\overrightarrow {AS} \].\[\overrightarrow {AC} \]
c) \[\overrightarrow {AS} \].\[\overrightarrow {BD} \]
d) \[\overrightarrow {AS} \].\[\overrightarrow {CD} \]
Quảng cáo
Trả lời:

a) Tam giác SAD có ba cạnh bằng nhau nên là tam giác đều, suy ra . Tứ giác ABCD là hình vuông nên \(\overrightarrow {AD} = \overrightarrow {BC} \), suy ra . Do đó
b) Tứ giác ABCD là hình vuông có độ dài mỗi cạnh là a nên độ dài đường chéo AC là \(\sqrt 2 a\). Tam giác SAC có \(SA = SC = a\) và \(AC = \sqrt 2 a\) nên tam giác SAC vuông cân tại \(S\), suy ra . Do đó .
c) Gọi \({\rm{O}}\) là giạo điểm của hai đường chéo \({\rm{AC}}\) và \({\rm{BD}}\) trong hình vuông \({\rm{ABCD}}\). Do đó, \({\rm{O}}\) là trung diểm của \({\rm{BD}},{\rm{O}}\) là trung diếm của \({\rm{AC}}\).
Tứ giác \({\rm{ABCD}}\) là hình vuông cạnh a nên độ dài đường chéo \({\rm{BD}}\) là
Gọi \({\rm{E}}\) là trung điểm của \({\rm{SC}}\). Mà \({\rm{O}}\) là trung diểm của \({\rm{AC}}\) nên \({\rm{OE}}\) là đường trung bình của tam giác \({\rm{SAC}}\), do đó, \({\rm{OE}}//{\rm{SA}},OE = \frac{1}{2}SA = \frac{a}{2}\). Suy ra: \(\overrightarrow {AS} = 2\overrightarrow {OE} \)
Vì \({\rm{O}}\) là trung diểm của \({\rm{BD}}\) nên \(\overrightarrow {BD} = 2\overrightarrow {OB} \)
Vì tam giác SBC có ba cạnh bằng nhau nên tam giác SBC là tam giác đều. Do đó, $B E$ là đường trung tuyến đồng thời là đường cao của tam giác \({\rm{SBC}}\). Do đó, \(EB = \frac{{a\sqrt 3 }}{2}\).
Ta có: \(O{E^2} + O{B^2} = \frac{{{a^2}}}{4} + \frac{{{a^2}}}{2} = \frac{{3{a^2}}}{4} = E{B^2}\) nên EOB vuông tại \({\rm{O}}\). Do đó, \(\overrightarrow {OE} \bot \overrightarrow {OB} \)
Ta có: \(\overrightarrow {AS} \cdot \overrightarrow {BD} = 2\overrightarrow {OE} \cdot ( - 2\overrightarrow {OB} ) = - 4\overrightarrow {OE} \cdot \overrightarrow {OB} = 0\)
d) Tứ giác ABCD là hình vuông nên \(\overrightarrow {CD} = \overrightarrow {BA} \)
Ta có: \(\overrightarrow {AS} \cdot \overrightarrow {CD} = \overrightarrow {AS} \cdot \overrightarrow {BA} = - \overrightarrow {AS} \cdot \overrightarrow {AB} = - |\overrightarrow {AS} | \cdot |\overrightarrow {AB} |\cos (\overrightarrow {AS} ,\overrightarrow {AB} ) = - |\overrightarrow {AS} | \cdot |\overrightarrow {AB} |\cos SAB\)
Vì tam giác \({\rm{SAB}}\) có ba cạnh bằng nhau nên tam giác \({\rm{SAB}}\) dều, suy ra
Suy ra:
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có:
Tương tự ta cūng có \(\overrightarrow {AB} \cdot \overrightarrow {AD} = \frac{{{a^2}}}{2}\).
Ta lại có \(\overrightarrow {AM} = \frac{1}{2}(\overrightarrow {AC} + \overrightarrow {AD} )\), suy ra:
\[\overrightarrow {AB} .\overrightarrow {AM} = \overrightarrow {AB} .\frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{2}\left( {\overrightarrow {AB} .\overrightarrow {AC} + \overrightarrow {AB} .\overrightarrow {AD} } \right) = \frac{1}{2}\left( {\frac{{{a^2}}}{2} + \frac{{{a^2}}}{2}} \right) = \frac{{{a^2}}}{2}\]
b) Ta có: \[\overrightarrow {AB} .\overrightarrow {CD} = \left( {\overrightarrow {AM} + \overrightarrow {MB} } \right)\overrightarrow {CD} = \overrightarrow {AM} .\overrightarrow {CD} + \overrightarrow {MB} .\overrightarrow {CD} \]
Mà AM, BM là trung tuyến của các tam giác đều ACD, BCD nên \(\overrightarrow {AM} \bot \overrightarrow {CD} ,\overrightarrow {MB} \bot \overrightarrow {CD} \).
Suy ra \(\overrightarrow {AM} \cdot \overrightarrow {CD} = \overrightarrow {MB} \cdot \overrightarrow {CD} = 0\).
Từ các kết quả trên ta có \(\overrightarrow {AB} \cdot \overrightarrow {CD} = 0\). Suy ra
Lời giải
a) Vì ABCD là hình bình hành nên \(AB//CD\). Gọi \(E\) là điểm thuộc tia $A B$ sao cho \(\overrightarrow {BE} = \overrightarrow {DC} \).
Ta có:
\((\overrightarrow {DC} ,\overrightarrow {BS} ) = (\overrightarrow {BE} ,\overrightarrow {BS} ) = \widehat {EBS}{\rm{. }}\) vuông cân (tại \(S\) ) nên
Suy ra , hay .
Mặt khác, do \(AB = a\) nên \(AS = BS = \frac{{a\sqrt 2 }}{2}\).
Từ đó ta có:
Vậy
b) .
c) Tam giác ASB cân tại \(S\) và \(M\) là trung điểm của cạnh $A B$ nên \(SM \bot AB\), hay \(\overrightarrow {MS} \bot \overrightarrow {AB} \). Suy ra \(\overrightarrow {DC} \cdot \overrightarrow {MS} = \overrightarrow {AB} \cdot \overrightarrow {MS} = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.