12 bài tập Góc giữa hai vectơ trong không gian – Tích vô hướng (có lời giải)
53 người thi tuần này 4.6 147 lượt thi 12 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

Ta có \[\overrightarrow {AD} \; = \overrightarrow {A'D'} \], suy ra \[\left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \overrightarrow {DAB} = {90^ \circ }\].
Ta có \[\overrightarrow {A'C'} \; = \overrightarrow {AC} \], suy ra \[\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \overrightarrow {CAB} = {45^ \circ }\]Lời giải

Vì \(A{A^\prime }//C{C^\prime }\) và \(A{A^\prime } = C{C^\prime }\) nên \(A{A^\prime }{C^\prime }C\) là hình bình hành.
Suy ra \(\overrightarrow {AC} = \overrightarrow {{A^\prime }{C^\prime }} \).
Vì AA'B'B là hình vuông nên \(\overrightarrow {{A^\prime }A} = \overrightarrow {{B^\prime }B} \).
Do đó
(Vì \(B{B^\prime }{C^\prime }C\) là hình vuông nên \({B^\prime }C\) là phân giác của \(B{B^\prime }{C^\prime }\) ).
Lời giải
a) Vì \(\overrightarrow {AB} = \vec u,\overrightarrow {AC} = \vec v\) nên
b) \(|\vec u| = 2,|\vec v| = 3\) nên \(|\overrightarrow {AB} | = 2,|\overrightarrow {AC} | = 3\).
Ta có
Lời giải

a) Ta có:
Tương tự ta cūng có \(\overrightarrow {AB} \cdot \overrightarrow {AD} = \frac{{{a^2}}}{2}\).
Ta lại có \(\overrightarrow {AM} = \frac{1}{2}(\overrightarrow {AC} + \overrightarrow {AD} )\), suy ra:
\[\overrightarrow {AB} .\overrightarrow {AM} = \overrightarrow {AB} .\frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{2}\left( {\overrightarrow {AB} .\overrightarrow {AC} + \overrightarrow {AB} .\overrightarrow {AD} } \right) = \frac{1}{2}\left( {\frac{{{a^2}}}{2} + \frac{{{a^2}}}{2}} \right) = \frac{{{a^2}}}{2}\]
b) Ta có: \[\overrightarrow {AB} .\overrightarrow {CD} = \left( {\overrightarrow {AM} + \overrightarrow {MB} } \right)\overrightarrow {CD} = \overrightarrow {AM} .\overrightarrow {CD} + \overrightarrow {MB} .\overrightarrow {CD} \]
Mà AM, BM là trung tuyến của các tam giác đều ACD, BCD nên \(\overrightarrow {AM} \bot \overrightarrow {CD} ,\overrightarrow {MB} \bot \overrightarrow {CD} \).
Suy ra \(\overrightarrow {AM} \cdot \overrightarrow {CD} = \overrightarrow {MB} \cdot \overrightarrow {CD} = 0\).
Từ các kết quả trên ta có \(\overrightarrow {AB} \cdot \overrightarrow {CD} = 0\). Suy ra
Lời giải

a) Vì ABB'A' là hình vuông nên \(\overrightarrow {AB} = \overrightarrow {{A^\prime }{B^\prime }} \).
Do đó (do \({A^\prime }{B^\prime }{C^\prime }{D^\prime }\) là hình vuông nên \({A^\prime }{C^\prime }\) là̀ phân giác của góc \(\left. {{D^\prime }{A^\prime }{B^{\prime \prime }}} \right)\).
Ví \({A^\prime }{B^\prime }{C^\prime }{D^\prime }\) là hình vuông cạnh bẳng 1 nên \({A^\prime }{C^\prime } = \sqrt 2 \).
Ta có
Vì \({\rm{AC}}{{\rm{C}}^\prime }{A^\prime }\) là hình bình hành nên \(\overrightarrow {C{C^\prime }} = \overrightarrow {A{A^\prime }} \).
Do đó
Do đó \(\overrightarrow {AB} \bot \overrightarrow {C{C^\prime }} \). Suy ra \(\overrightarrow {AB} \cdot \overrightarrow {C{C^\prime }} = 0\).
b) \(\left( {\overrightarrow {AC} ,\overrightarrow {A{C^\prime }} } \right) = CA{C^\prime }\).
Ta có \(A{C^\prime }\) là đường chéo của hình lập phương cạnh bẳng 1 nên \(A{C^\prime } = \sqrt 3 \).
\({\rm{AC}}\) là đường chéo của hình vuông \({\rm{ABCD}}\) cạnh bằng 1 nên \(AC = \sqrt 2 \).
Xét \({\rm{DACC}}\) có
Vậy
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

