Trong không gian, cho \[\overrightarrow u \] và \[\overrightarrow v \] thoả mãn \[\left| {\overrightarrow u } \right| = 2\] và \[\left| {\overrightarrow v } \right| = 3\]. Lấy một điểm A bất kì, gọi B và C là hai điểm sao cho \[\overrightarrow {AB} = \overrightarrow u ,\overrightarrow {AC} = \overrightarrow v \] (Hình 24). Giả sử \[\widehat {BAC} = {60^ \circ }\].
a) Tính góc \[\left( {\overrightarrow u ,\overrightarrow v } \right)\].
b) Trong mặt phẳng (ABC), tính tích vô hướng \[\overrightarrow {AB} .\overrightarrow {AC} \].

a) Tính góc \[\left( {\overrightarrow u ,\overrightarrow v } \right)\].
b) Trong mặt phẳng (ABC), tính tích vô hướng \[\overrightarrow {AB} .\overrightarrow {AC} \].
Quảng cáo
Trả lời:
a) Vì \(\overrightarrow {AB} = \vec u,\overrightarrow {AC} = \vec v\) nên
b) \(|\vec u| = 2,|\vec v| = 3\) nên \(|\overrightarrow {AB} | = 2,|\overrightarrow {AC} | = 3\).
Ta có
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có:
Tương tự ta cūng có \(\overrightarrow {AB} \cdot \overrightarrow {AD} = \frac{{{a^2}}}{2}\).
Ta lại có \(\overrightarrow {AM} = \frac{1}{2}(\overrightarrow {AC} + \overrightarrow {AD} )\), suy ra:
\[\overrightarrow {AB} .\overrightarrow {AM} = \overrightarrow {AB} .\frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{2}\left( {\overrightarrow {AB} .\overrightarrow {AC} + \overrightarrow {AB} .\overrightarrow {AD} } \right) = \frac{1}{2}\left( {\frac{{{a^2}}}{2} + \frac{{{a^2}}}{2}} \right) = \frac{{{a^2}}}{2}\]
b) Ta có: \[\overrightarrow {AB} .\overrightarrow {CD} = \left( {\overrightarrow {AM} + \overrightarrow {MB} } \right)\overrightarrow {CD} = \overrightarrow {AM} .\overrightarrow {CD} + \overrightarrow {MB} .\overrightarrow {CD} \]
Mà AM, BM là trung tuyến của các tam giác đều ACD, BCD nên \(\overrightarrow {AM} \bot \overrightarrow {CD} ,\overrightarrow {MB} \bot \overrightarrow {CD} \).
Suy ra \(\overrightarrow {AM} \cdot \overrightarrow {CD} = \overrightarrow {MB} \cdot \overrightarrow {CD} = 0\).
Từ các kết quả trên ta có \(\overrightarrow {AB} \cdot \overrightarrow {CD} = 0\). Suy ra
Lời giải
a) Vì ABCD là hình bình hành nên \(AB//CD\). Gọi \(E\) là điểm thuộc tia $A B$ sao cho \(\overrightarrow {BE} = \overrightarrow {DC} \).
Ta có:
\((\overrightarrow {DC} ,\overrightarrow {BS} ) = (\overrightarrow {BE} ,\overrightarrow {BS} ) = \widehat {EBS}{\rm{. }}\) vuông cân (tại \(S\) ) nên
Suy ra , hay .
Mặt khác, do \(AB = a\) nên \(AS = BS = \frac{{a\sqrt 2 }}{2}\).
Từ đó ta có:
Vậy
b) .
c) Tam giác ASB cân tại \(S\) và \(M\) là trung điểm của cạnh $A B$ nên \(SM \bot AB\), hay \(\overrightarrow {MS} \bot \overrightarrow {AB} \). Suy ra \(\overrightarrow {DC} \cdot \overrightarrow {MS} = \overrightarrow {AB} \cdot \overrightarrow {MS} = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.