Câu hỏi:

31/07/2025 25 Lưu

Trong không gian, cho \[\overrightarrow u \] và \[\overrightarrow v \] thoả mãn \[\left| {\overrightarrow u } \right| = 2\] và \[\left| {\overrightarrow v } \right| = 3\]. Lấy một điểm A bất kì, gọi B và C là hai điểm sao cho \[\overrightarrow {AB}  = \overrightarrow u ,\overrightarrow {AC}  = \overrightarrow v \] (Hình 24). Giả sử \[\widehat {BAC} = {60^ \circ }\].
Media VietJack

a) Tính góc \[\left( {\overrightarrow u ,\overrightarrow v } \right)\].

b) Trong mặt phẳng (ABC), tính tích vô hướng \[\overrightarrow {AB} .\overrightarrow {AC} \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Vì \(\overrightarrow {AB}  = \vec u,\overrightarrow {AC}  = \vec v\) nên (u,v)=(AB,AC)=BAC=60°

b) \(|\vec u| = 2,|\vec v| = 3\) nên \(|\overrightarrow {AB} | = 2,|\overrightarrow {AC} | = 3\).

Ta có ABAC=|AB||AC|cos(AB,AC)=2.3cos60°

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện đều ABCD có cạnh bằng a và M là trung điểm của CD.  (ảnh 1)

a) Ta có: ABAC=|AB||AC|cos(AB,AC) =ABACcosBAC=aacos60°=a22

Tương tự ta cūng có \(\overrightarrow {AB}  \cdot \overrightarrow {AD}  = \frac{{{a^2}}}{2}\).

Ta lại có \(\overrightarrow {AM}  = \frac{1}{2}(\overrightarrow {AC}  + \overrightarrow {AD} )\), suy ra:

\[\overrightarrow {AB} .\overrightarrow {AM}  = \overrightarrow {AB} .\frac{1}{2}\left( {\overrightarrow {AC}  + \overrightarrow {AD} } \right) = \frac{1}{2}\left( {\overrightarrow {AB} .\overrightarrow {AC}  + \overrightarrow {AB} .\overrightarrow {AD} } \right) = \frac{1}{2}\left( {\frac{{{a^2}}}{2} + \frac{{{a^2}}}{2}} \right) = \frac{{{a^2}}}{2}\]

b) Ta có: \[\overrightarrow {AB} .\overrightarrow {CD}  = \left( {\overrightarrow {AM}  + \overrightarrow {MB} } \right)\overrightarrow {CD}  = \overrightarrow {AM} .\overrightarrow {CD}  + \overrightarrow {MB} .\overrightarrow {CD} \]

Mà AM, BM là trung tuyến của các tam giác đều ACD, BCD nên \(\overrightarrow {AM}  \bot \overrightarrow {CD} ,\overrightarrow {MB}  \bot \overrightarrow {CD} \).

Suy ra \(\overrightarrow {AM}  \cdot \overrightarrow {CD}  = \overrightarrow {MB}  \cdot \overrightarrow {CD}  = 0\).

Từ các kết quả trên ta có \(\overrightarrow {AB}  \cdot \overrightarrow {CD}  = 0\). Suy ra (AB,CD)=90°

Lời giải

a) Vì ABCD là hình bình hành nên \(AB//CD\). Gọi \(E\) là điểm thuộc tia $A B$ sao cho \(\overrightarrow {BE}  = \overrightarrow {DC} \).

Ta có:

\((\overrightarrow {DC} ,\overrightarrow {BS} ) = (\overrightarrow {BE} ,\overrightarrow {BS} ) = \widehat {EBS}{\rm{. }}\) vuông cân (tại \(S\) ) nên SBA^=45°

Suy ra EBS^=180°45°=135°, hay (DC,BS)=135°.

Mặt khác, do \(AB = a\) nên \(AS = BS = \frac{{a\sqrt 2 }}{2}\).

Từ đó ta có: DCBS =|DC||BS|cos(DC,BS)=aa22cos135°=a22222.

Vậy DCBS=a22

b) DCAS=ABAS=|AB||AS|cos(AB,AS)=aa22cos45°=a22.

c) Tam giác ASB cân tại \(S\) và \(M\) là trung điểm của cạnh $A B$ nên \(SM \bot AB\), hay \(\overrightarrow {MS}  \bot \overrightarrow {AB} \). Suy ra \(\overrightarrow {DC}  \cdot \overrightarrow {MS}  = \overrightarrow {AB}  \cdot \overrightarrow {MS}  = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP