CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. S = (−∞; 2).         
B. \(S = \left( {\frac{1}{2};2} \right)\).                       
C. S = (2; +∞).         
D. S = (−1; 2).

Lời giải

B

Điều kiện \(\left\{ \begin{array}{l}x + 1 > 0\\2x - 1 > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > - 1\\x > \frac{1}{2}\end{array} \right.\)\( \Leftrightarrow x > \frac{1}{2}\).

\({\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 1} \right)\)\( \Leftrightarrow x + 1 > 2x - 1\)\( \Leftrightarrow x < 2\).

Kết hợp điều kiện, ta có tập nghiệm của bất phương trình là \(S = \left( {\frac{1}{2};2} \right)\).

Câu 2

A. 2.                         
B. 1.                         
C. 0. 
D. 3.

Lời giải

B

Điều kiện \(\left\{ \begin{array}{l}6 + x > 0\\9x > 0\end{array} \right. \Leftrightarrow x > 0\).

log3(6 + x) + log39x – 5 = 0 Û log3[9x(x + 6)] = 5 Û 9x2 + 54x = 35 Û x2 + 6x – 27 = 0

Û x = 9 (loại) hoặc x = 3 (thỏa mãn).

Vậy phương trình có 1 nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. x = 3.                   
B. x = 5.                   
C. \(x = \frac{9}{2}\).                
D. \(x = \frac{7}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left[ {\frac{5}{2}; + \infty } \right)\).  
B. \(\left( {\frac{5}{2}; + \infty } \right)\).       
C. (−∞; log25).         
D. \(\left( { - \infty ;\frac{5}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP