Cường độ một trận động đất \(M\) (độ Richter) được cho bởi công thức \(M = \log A - \log {A_0}\), với \(A\) là biên độ rung chấn tối đa và \({A_0}\) là một biên độ chuẩn (hằng số). Đầu thế kỉ 20 , một trận động đất ở San Francisco có cường độ 8 độ Richter. Trong cùng năm đó, một trận động đất khác ở Nam Mỹ có biên độ rung chấn mạnh hơn gấp 4 lần. Hỏi cường độ của trận động đất ở Nam Mỹ là bao nhiêu (kết quả được làm tròn đến hàng phần chục)?
Cường độ một trận động đất \(M\) (độ Richter) được cho bởi công thức \(M = \log A - \log {A_0}\), với \(A\) là biên độ rung chấn tối đa và \({A_0}\) là một biên độ chuẩn (hằng số). Đầu thế kỉ 20 , một trận động đất ở San Francisco có cường độ 8 độ Richter. Trong cùng năm đó, một trận động đất khác ở Nam Mỹ có biên độ rung chấn mạnh hơn gấp 4 lần. Hỏi cường độ của trận động đất ở Nam Mỹ là bao nhiêu (kết quả được làm tròn đến hàng phần chục)?
Quảng cáo
Trả lời:
Gọi \({M_1},{M_2}\) lần lượt là cường độ của trận động đất ở San Francisco và ở Nam Mỹ. Trận động đất ở San Francisco có cường độ là 8 độ Richter nên:
\({M_1} = \log A - \log {A_0} \Leftrightarrow 8 = \log A - \log {A_0}.\)
Trận động đất ở Nam Mỹ có biên độ là \(4A\), khi đó cường độ của trận động đất ở Nam Mỹ là:
\({M_2} = \log (4A) - \log {A_0} = \log 4 + \left( {\log A - \log {A_0}} \right) = \log 4 + 8 \approx 8,6\)(độ Richter).
Trả lời: 8,6.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(A = {9^{{{\log }_3}5 + {{\log }_3}2}}\)\( = {9^{{{\log }_3}10}}\)\( = {3^{2{{\log }_3}10}} = {10^2} = 100\).
Trả lời: 100.
Lời giải
Ta có \({x^2} + 9{y^2} = 6xy\)\( \Leftrightarrow {\left( {x + 3y} \right)^2} = 12xy\)\( \Leftrightarrow {\log _{12}}{\left( {x + 3y} \right)^2} = {\log _{12}}\left( {12xy} \right)\)
\( \Leftrightarrow 2{\log _{12}}\left( {x + 3y} \right) = {\log _{12}}12 + {\log _{12}}x + {\log _{12}}y\)\( \Leftrightarrow M = \frac{{{{\log }_{12}}12 + {{\log }_{12}}x + {{\log }_{12}}y}}{{2{{\log }_{12}}\left( {x + 3y} \right)}} = 1\)
Trả lời: 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.