Câu hỏi:

31/07/2025 10 Lưu

Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {2 + \cos x} ,\) trục hoành và các đường thẳng \(x = 0,x = \frac{\pi }{2}\). Khối tròn xoay tạo thành khi \(D\) quay quanh trục hoành có thể tích \(V\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
\(V = \pi \int\limits_0^{\frac{\pi }{2}} {{{\left( {\sqrt {2 + \cos x} } \right)}^2}dx = \left. {\pi \left( {2x + \sin x} \right)} \right|_0^{\frac{\pi }{2}} = \pi } (\pi  + 1).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì mặt cắt là tam giác vuông có một góc 450 nên mặt cắt là tam giác vuông cân.

Do đó diện tích của mặt cắt là: \(S(x) = \frac{1}{2}{\left( {\sqrt {4 - {x^2}} } \right)^2} = \frac{1}{2}\left( {4 - {x^2}} \right) = 2 - \frac{1}{2}{x^2}\)

Thể tích vật thể là: \(V = \int_{ - 2}^2 {\left( {2 - \frac{1}{2}{x^2}} \right)} dx = \left. {\left( {2x - \frac{{{x^3}}}{6}} \right)} \right|_{ - 2}^2 = \frac{8}{3} + \frac{8}{3} = \frac{{16}}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP