Câu hỏi:

29/07/2025 11 Lưu

 Cho D là hình phẳng giới hạn bởi đồ thị hàm số \[y = \sqrt {4 - x} \] \[\left( {x \le 4} \right)\], trục tung và trục hoành như hình vẽ. Tính thể tích khối tròn xoay tạo thành khi xoay D quanh trục Ox.

Cho D là hình phẳng giới hạn bởi đồ thị hàm số  (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Thể tích cần tính là: \(V = \pi \int_0^4 {(4 - x)} dx = \left. {\pi \left( {4x - \frac{{{x^2}}}{2}} \right)} \right|_0^4 = 8\pi .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét tam giác OAB vuông tại A , có \({\rm{AB}} = {\rm{OA}}\). tana = a.tana.

Khi quay miền tam giác OAB xung quanh trục Ox ta được khối nón có bán kính đáy \({\rm{r}} = {\rm{AB}} = {\rm{a}}\).tana và chiều cao \({\rm{h}} = {\rm{OA}} = {\rm{a}}\).

Do đó \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {a^3}{\tan ^2}\alpha \)

b) Có \({V^\prime } = \frac{1}{3}\pi {a^3} \cdot 2\tan \alpha  \cdot \frac{1}{{{{\cos }^2}\alpha }}\)

Vi \(0 < \alpha  \le \frac{\pi }{4} =  > 0 < \) tan \(\alpha  \le 1\) nên \({V^\prime } > 0\). Do đó \(V\) là hàm số đồng biến trên \(\left( {0;\frac{\pi }{4}} \right)\)

Do đó \(\mathop {\max }\limits_{\left( {0;\frac{\pi }{4}} \right]} V = V\left( {\frac{\pi }{4}} \right) = \frac{1}{3}\pi {a^3}\)

Vậy \(\alpha  = \frac{\pi }{4}\) thì thể tích khối nón là lớn nhất.

Lời giải

Vì mặt cắt là tam giác vuông có một góc 450 nên mặt cắt là tam giác vuông cân.

Do đó diện tích của mặt cắt là: \(S(x) = \frac{1}{2}{\left( {\sqrt {4 - {x^2}} } \right)^2} = \frac{1}{2}\left( {4 - {x^2}} \right) = 2 - \frac{1}{2}{x^2}\)

Thể tích vật thể là: \(V = \int_{ - 2}^2 {\left( {2 - \frac{1}{2}{x^2}} \right)} dx = \left. {\left( {2x - \frac{{{x^3}}}{6}} \right)} \right|_{ - 2}^2 = \frac{8}{3} + \frac{8}{3} = \frac{{16}}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP