Trên mặt phẳng tọa độ Oxy, vẽ nửa đường tròn tâm O, bán kính r = 2, nằm phía trên trục Ox. Gọi D là hình phẳng giới hạn bởi nửa đường tròn, trục Ox và hai đường thẳng x = -1, x = 1. Tính thể tích khối tròn xoay tạo thành khi quay D quanh trục Ox.
Trên mặt phẳng tọa độ Oxy, vẽ nửa đường tròn tâm O, bán kính r = 2, nằm phía trên trục Ox. Gọi D là hình phẳng giới hạn bởi nửa đường tròn, trục Ox và hai đường thẳng x = -1, x = 1. Tính thể tích khối tròn xoay tạo thành khi quay D quanh trục Ox.

Quảng cáo
Trả lời:

Phương trình nửa đường tròn nằm phía trên trục Ox có \({\rm{r}} = 2\) là: \(y = \sqrt {4 - {x^2}} \)
Thể tích cần tính là: \(V = \pi \int_{ - 1}^1 {\left( {4 - {x^2}} \right)} dx = \left. {\pi \left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_{ - 1}^1 = \pi \left( {\frac{{11}}{3} + \frac{{11}}{3}} \right) = \frac{{22\pi }}{3}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét tam giác OAB vuông tại A , có \({\rm{AB}} = {\rm{OA}}\). tana = a.tana.
Khi quay miền tam giác OAB xung quanh trục Ox ta được khối nón có bán kính đáy \({\rm{r}} = {\rm{AB}} = {\rm{a}}\).tana và chiều cao \({\rm{h}} = {\rm{OA}} = {\rm{a}}\).
Do đó \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {a^3}{\tan ^2}\alpha \)
b) Có \({V^\prime } = \frac{1}{3}\pi {a^3} \cdot 2\tan \alpha \cdot \frac{1}{{{{\cos }^2}\alpha }}\)
Vi \(0 < \alpha \le \frac{\pi }{4} = > 0 < \) tan \(\alpha \le 1\) nên \({V^\prime } > 0\). Do đó \(V\) là hàm số đồng biến trên \(\left( {0;\frac{\pi }{4}} \right)\)
Do đó \(\mathop {\max }\limits_{\left( {0;\frac{\pi }{4}} \right]} V = V\left( {\frac{\pi }{4}} \right) = \frac{1}{3}\pi {a^3}\)
Vậy \(\alpha = \frac{\pi }{4}\) thì thể tích khối nón là lớn nhất.
Lời giải
Ta có OABC là hình thang vuông, có đường cao OC nằm trên trục Ox .
Khi quay hình thang OABC quanh trục Ox ta được khối tròn xoay là khối nón cụt, có bán kính đáy bé \({r_1} = OA = 1\), bán kính đáy lớn \({r_2} = BC = 2\) và chiều cao \(h\) \( = OC = 2\).
Thể tích cần tính là: \(V = \frac{1}{3}\pi \left( {r_1^2 + {r_1}{r_2} + r_2^2} \right)h = \frac{1}{3}\pi \left( {{1^2} + 1 \cdot 2 + {2^2}} \right) \cdot 2 = \frac{{14\pi }}{3}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.