Cho tam giác OAB có cạnh OA = a nằm trên trục Ox và \[\widehat {AOB} = \alpha {\rm{ }}\left( {0 < \alpha \le \frac{\pi }{4}} \right)\]. Gọi (B) là khối tròn xoay sinh ra khi quay miền tam giác OAB xung quanh Ox như hình vẽ
a) Tính thể tích V của (B) theo a và \[\alpha \].
b) Tìm \[\alpha \] sao cho thể tích V lớn nhất.

a) Tính thể tích V của (B) theo a và \[\alpha \].
b) Tìm \[\alpha \] sao cho thể tích V lớn nhất.
Quảng cáo
Trả lời:
a) Xét tam giác OAB vuông tại A , có \({\rm{AB}} = {\rm{OA}}\). tana = a.tana.
Khi quay miền tam giác OAB xung quanh trục Ox ta được khối nón có bán kính đáy \({\rm{r}} = {\rm{AB}} = {\rm{a}}\).tana và chiều cao \({\rm{h}} = {\rm{OA}} = {\rm{a}}\).
Do đó \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {a^3}{\tan ^2}\alpha \)
b) Có \({V^\prime } = \frac{1}{3}\pi {a^3} \cdot 2\tan \alpha \cdot \frac{1}{{{{\cos }^2}\alpha }}\)
Vi \(0 < \alpha \le \frac{\pi }{4} = > 0 < \) tan \(\alpha \le 1\) nên \({V^\prime } > 0\). Do đó \(V\) là hàm số đồng biến trên \(\left( {0;\frac{\pi }{4}} \right)\)
Do đó \(\mathop {\max }\limits_{\left( {0;\frac{\pi }{4}} \right]} V = V\left( {\frac{\pi }{4}} \right) = \frac{1}{3}\pi {a^3}\)
Vậy \(\alpha = \frac{\pi }{4}\) thì thể tích khối nón là lớn nhất.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì mặt cắt là tam giác vuông có một góc 450 nên mặt cắt là tam giác vuông cân.
Do đó diện tích của mặt cắt là: \(S(x) = \frac{1}{2}{\left( {\sqrt {4 - {x^2}} } \right)^2} = \frac{1}{2}\left( {4 - {x^2}} \right) = 2 - \frac{1}{2}{x^2}\)
Thể tích vật thể là: \(V = \int_{ - 2}^2 {\left( {2 - \frac{1}{2}{x^2}} \right)} dx = \left. {\left( {2x - \frac{{{x^3}}}{6}} \right)} \right|_{ - 2}^2 = \frac{8}{3} + \frac{8}{3} = \frac{{16}}{3}\)
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.