Chị Minh Hiền muốn làm một cái cổng hình Parabol như hình vẽ bên dưới. Chiều cao \(GH = 4m\), chiều rộng \(AB = 4m\), \(AC = BD = 0,9m\). Chị Minh Hiền làm hai cánh cổng khi đóng lại là hình chữ nhật \(CDEF\) tô đậm có giá là \(1200000\) đồng\(/{m^2}\), còn các phần để trắng làm xiên hoa có giá là \(900000\) đồng\(/{m^2}\). Hỏi tổng số tiền để làm hai phần nói trên gần nhất với số tiền nào dưới đây?
Chị Minh Hiền muốn làm một cái cổng hình Parabol như hình vẽ bên dưới. Chiều cao \(GH = 4m\), chiều rộng \(AB = 4m\), \(AC = BD = 0,9m\). Chị Minh Hiền làm hai cánh cổng khi đóng lại là hình chữ nhật \(CDEF\) tô đậm có giá là \(1200000\) đồng\(/{m^2}\), còn các phần để trắng làm xiên hoa có giá là \(900000\) đồng\(/{m^2}\). Hỏi tổng số tiền để làm hai phần nói trên gần nhất với số tiền nào dưới đây?

Quảng cáo
Trả lời:
Chọn A
Gắn hệ trục tọa độ Oxy sao cho \(AB\) trùng \[Ox\], \(A\) trùng \[O\] khi đó parabol có đỉnh \[G\left( {2;4} \right)\] và đi qua gốc tọa độ.

Giả sử phương trình của parabol có dạng \[y = a{x^2} + bx + c{\rm{ }}\left( {a \ne 0} \right)\].
Vì parabol có đỉnh là \[G\left( {2\,;4} \right)\] và đi qua điểm \[O\left( {0\,;0} \right)\] nên ta có \[\left\{ \begin{array}{l}c = 0\\ - \frac{b}{{2a}} = 2\\a{.2^2} + b.2 + c = 4\end{array} \right.\]\[\Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 4\\c = 0\end{array} \right.\].
Suy ra phương trình parabol là \[y = f(x) = - {x^2} + 4x\].
Diện tích của cả cổng là \[S = \int\limits_0^4 {\left( { - {x^2} + 4x} \right){\rm{d}}x = } \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|_0^4 = \frac{{32}}{3}\,\,\left( {{{\rm{m}}^2}} \right)\].
Mặt khác chiều cao \[CF = DE = f\left( {0,9} \right) = 2,79({\rm{m}})\]; \[CD = 4 - 2.0,9 = 2,2\,\,\left( {\rm{m}} \right)\].
Diện tích hai cánh cổng là \[{S_{CDEF}} = CD.CF = 6,138\,\,\left( {{{\rm{m}}^2}} \right)\].
Diện tích phần xiên hoa là \[{S_{xh}} = S - {S_{CDEF}} = \frac{{32}}{3} - 6,14 = \frac{{6793}}{{1500}}\,\,\left( {{{\rm{m}}^2}} \right)\].
Vậy tổng số tiền để làm cổng là \[6,138.1200000 + \frac{{6793}}{{1500}}\,.900000 = 11441400\] đồng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Chọn hệ trục \[Oxy\] như hình vẽ.

Gọi \[\left( {{P_1}} \right):y = {a_1}{x^2} + {b_1}\] là Parabol đi qua hai điểm \[A\left( {\frac{{19}}{2};0} \right),B\left( {0;2} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = a.{\left( {\frac{{19}}{2}} \right)^2} + 2\\2 = b\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_1} = - \frac{8}{{361}}\\{b_1} = 2\end{array} \right.\]\[ \Rightarrow \left( {{P_1}} \right):y = - \frac{8}{{361}}{x^2} + 2\].
Gọi \[\left( {{P_2}} \right):y = {a_2}{x^2} + {b_2}\] là Parabol đi qua hai điểm \[C\left( {10;0} \right),D\left( {0;\frac{5}{2}} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = {a_2}.{\left( {10} \right)^2} + \frac{5}{2}\\\frac{5}{2} = {b_2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_2} = - \frac{1}{{40}}\\{b_2} = \frac{5}{2}\end{array} \right.\]\[ \Rightarrow \left( {{P_2}} \right):y = - \frac{1}{{40}}{x^2} + \frac{5}{2}\].
Ta có thể tích của bê tông là: \[V = 5.2\left[ {\int_0^{10} {\left( { - \frac{1}{{40}}{x^2} + \frac{5}{2}} \right)} {\rm{d}}x - \int_0^{\frac{{19}}{2}} {\left( { - \frac{8}{{361}}{x^2} + 2} \right)} {\rm{d}}x} \right] = 40\,{{\rm{m}}^3}\].
Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: \[5.40 = 200\] triệu đồng
Lời giải
Chọn B
Chọn hệ trục như hình vẽ
Ta cần tìm diện tích của \(S\left( x \right)\)thiết diện.
Gọi \(d\left( {O,MN} \right) = x\)
\(\left( E \right):\frac{{{x^2}}}{{{{75}^2}}} + \frac{{{y^2}}}{{{{45}^2}}} = 1.\)
Lúc đó \[MN = 2y = 2\sqrt {{{45}^2}\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)} = 90\sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}} \]
\[ \Rightarrow R = \frac{{MN}}{{\sqrt 2 }} = \frac{{90}}{{\sqrt 2 }}.\sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}} \Rightarrow {R^2} = \frac{{{{90}^2}}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)\]
\[S\left( x \right) = \frac{1}{4}\pi {R^2} - \frac{1}{2}{R^2} = \left( {\frac{1}{4}\pi - \frac{1}{2}} \right){R^2} = \left( {\pi - 2} \right)\frac{{2025}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right).\]
Thể tích khoảng không cần tìm là
\(V = \int\limits_{ - 75}^{75} {\left( {\pi - 2} \right)\frac{{2025}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right) \approx 115586{m^3}.} \)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.