Câu hỏi:

29/07/2025 11 Lưu

Gọi \(\left( H \right)\) là phần giao của hai khối \(\frac{1}{4}\) hình trụ có bán kính \(a\), hai trục hình trụ vuông góc với nhau như hình vẽ sau. Tính thể tích của khối \(\left( H \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Gọi ( H ) là phần giao của hai khối 1/4 hình trụ có bán kính (a), hai trục hình trụ vuông góc (ảnh 1)

· Đặt hệ toạ độ \(Oxyz\) như hình vẽ, xét mặt cắt song song với mp \(\left( {Oyz} \right)\) cắt trục \(Ox\) tại \(x\): thiết diện mặt cắt luôn là hình vuông có cạnh \(\sqrt {{a^2} - {x^2}} \) \(\left( {0 \le x \le a} \right)\).

· Do đó thiết diện mặt cắt có diện tích: \(S\left( x \right) = {a^2} - {x^2}\).

· Vậy \({V_{\left( H \right)}} = \int\limits_0^a {S\left( x \right){\rm{d}}x} \)\( = \int\limits_0^a {\left( {{a^2} - {x^2}} \right){\rm{d}}x} \)\( = \left. {\left( {{a^2}x - \frac{{{x^3}}}{3}} \right)} \right|_0^a\)\( = \frac{{2{a^3}}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Chọn hệ trục \[Oxy\] như hình vẽ.

Trong chương trình nông thôn mới của tỉnh Phú Yên, tại xã Hòa Mỹ Tây có xây một cây cầu bằng bê tông như hình vẽ (ảnh 2)

Gọi \[\left( {{P_1}} \right):y = {a_1}{x^2} + {b_1}\] là Parabol đi qua hai điểm \[A\left( {\frac{{19}}{2};0} \right),B\left( {0;2} \right)\]

Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = a.{\left( {\frac{{19}}{2}} \right)^2} + 2\\2 = b\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_1} =  - \frac{8}{{361}}\\{b_1} = 2\end{array} \right.\]\[ \Rightarrow \left( {{P_1}} \right):y =  - \frac{8}{{361}}{x^2} + 2\].

Gọi \[\left( {{P_2}} \right):y = {a_2}{x^2} + {b_2}\] là Parabol đi qua hai điểm \[C\left( {10;0} \right),D\left( {0;\frac{5}{2}} \right)\]

Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = {a_2}.{\left( {10} \right)^2} + \frac{5}{2}\\\frac{5}{2} = {b_2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_2} =  - \frac{1}{{40}}\\{b_2} = \frac{5}{2}\end{array} \right.\]\[ \Rightarrow \left( {{P_2}} \right):y =  - \frac{1}{{40}}{x^2} + \frac{5}{2}\].

Ta có thể tích của bê tông là: \[V = 5.2\left[ {\int_0^{10} {\left( { - \frac{1}{{40}}{x^2} + \frac{5}{2}} \right)} {\rm{d}}x - \int_0^{\frac{{19}}{2}} {\left( { - \frac{8}{{361}}{x^2} + 2} \right)} {\rm{d}}x} \right] = 40\,{{\rm{m}}^3}\].

Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: \[5.40 = 200\] triệu đồng

Lời giải

Chọn B

Sân vận động Sport Hub (Singapore) là sân có mái vòm kỳ vĩ nhất thế giới. Đây là nơi diễn ra lễ khai mạc Đại hội thể thao Đông Nam Á được tổ chức tại Singapore năm (ảnh 2)

Chọn hệ trục như hình vẽ

Ta cần tìm diện tích của \(S\left( x \right)\)thiết diện.

Gọi \(d\left( {O,MN} \right) = x\)

\(\left( E \right):\frac{{{x^2}}}{{{{75}^2}}} + \frac{{{y^2}}}{{{{45}^2}}} = 1.\)

Lúc đó \[MN = 2y = 2\sqrt {{{45}^2}\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)}  = 90\sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}} \]

\[ \Rightarrow R = \frac{{MN}}{{\sqrt 2 }} = \frac{{90}}{{\sqrt 2 }}.\sqrt {1 - \frac{{{x^2}}}{{{{75}^2}}}}  \Rightarrow {R^2} = \frac{{{{90}^2}}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right)\]

\[S\left( x \right) = \frac{1}{4}\pi {R^2} - \frac{1}{2}{R^2} = \left( {\frac{1}{4}\pi  - \frac{1}{2}} \right){R^2} = \left( {\pi  - 2} \right)\frac{{2025}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right).\]

Thể tích khoảng không cần tìm là

\(V = \int\limits_{ - 75}^{75} {\left( {\pi  - 2} \right)\frac{{2025}}{2}.\left( {1 - \frac{{{x^2}}}{{{{75}^2}}}} \right) \approx 115586{m^3}.} \)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP