Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng \[10\] cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết \[AB = 5\]cm, \[OH = 4\] cm. Biết giá trang trí hoa văn \[1{\rm{c}}{{\rm{m}}^2}\] là 50.000 đồng, tính số tiền cần bỏ ra để trang trí hoa văn đó.
Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng \[10\] cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết \[AB = 5\]cm, \[OH = 4\] cm. Biết giá trang trí hoa văn \[1{\rm{c}}{{\rm{m}}^2}\] là 50.000 đồng, tính số tiền cần bỏ ra để trang trí hoa văn đó.

Quảng cáo
Trả lời:


Đưa parabol vào hệ trục \[Oxy\] ta tìm được phương trình là: \[\left( P \right):y = - \frac{{16}}{{25}}{x^2} + \frac{{16}}{5}x\].
Diện tích hình phẳng giới hạn bởi \[\left( P \right):y = - \frac{{16}}{{25}}{x^2} + \frac{{16}}{5}x\], trục hoành và các đường thẳng \[x = 0\], \[x = 5\] là: \[S = \int\limits_0^5 {\left( { - \frac{{16}}{{25}}{x^2} + \frac{{16}}{5}x} \right)} {\rm{d}}x = \frac{{40}}{3}\].
Tổng diện tích phần bị khoét đi: \[{S_1} = 4S = \frac{{160}}{3}\] \[{\rm{c}}{{\rm{m}}^2}\].
Diện tích của hình vuông là: \[{S_{hv}} = 100{\rm{ c}}{{\rm{m}}^2}\].
diện tích bề mặt hoa văn là: \[{S_2} = {S_{hv}} - {S_1} = 100 - \frac{{160}}{3} = \frac{{140}}{3}{\rm{ c}}{{\rm{m}}^2}\].
Vậy số tiền cần bỏ ra để trang trí hoa văn đó là: \[\frac{{140}}{3}.50000 \approx 2333333\] đồng
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Vì \(AB = 4dm;BC = 8dm.\)\( \Rightarrow A( - 2;4),\)\(B(2;4),C(2; - 4),D( - 2; - 4)\).
parabol là: \(y = {x^2}\) hoặc \(y = - {x^2}\)
Diện tích phần tô đậm là \[{S_1} = 4\int\limits_0^2 {{x^2}dx = \frac{{32}}{3}\begin{array}{*{20}{c}}{}\end{array}(d{m^2})} \]
Diện tích hình chữ nhật là \[S = 4.8 = 32\begin{array}{*{20}{c}}{}\end{array}({m^2})\]
Diện tích phần trắng là \[{S_2} = S - {S_1} = 32 - \frac{{32}}{3} = \frac{{64}}{3}\begin{array}{*{20}{c}}{}\end{array}(d{m^2})\]
Tổng chi phí trang chí là:
Lời giải
Chọn D
Chọn hệ trục \[Oxy\] như hình vẽ.

Gọi \[\left( {{P_1}} \right):y = {a_1}{x^2} + {b_1}\] là Parabol đi qua hai điểm \[A\left( {\frac{{19}}{2};0} \right),B\left( {0;2} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = a.{\left( {\frac{{19}}{2}} \right)^2} + 2\\2 = b\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_1} = - \frac{8}{{361}}\\{b_1} = 2\end{array} \right.\]\[ \Rightarrow \left( {{P_1}} \right):y = - \frac{8}{{361}}{x^2} + 2\].
Gọi \[\left( {{P_2}} \right):y = {a_2}{x^2} + {b_2}\] là Parabol đi qua hai điểm \[C\left( {10;0} \right),D\left( {0;\frac{5}{2}} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = {a_2}.{\left( {10} \right)^2} + \frac{5}{2}\\\frac{5}{2} = {b_2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_2} = - \frac{1}{{40}}\\{b_2} = \frac{5}{2}\end{array} \right.\]\[ \Rightarrow \left( {{P_2}} \right):y = - \frac{1}{{40}}{x^2} + \frac{5}{2}\].
Ta có thể tích của bê tông là: \[V = 5.2\left[ {\int_0^{10} {\left( { - \frac{1}{{40}}{x^2} + \frac{5}{2}} \right)} {\rm{d}}x - \int_0^{\frac{{19}}{2}} {\left( { - \frac{8}{{361}}{x^2} + 2} \right)} {\rm{d}}x} \right] = 40\,{{\rm{m}}^3}\].
Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: \[5.40 = 200\] triệu đồng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.