Một cổng chào có dạng hình Parabol chiều cao \[18\;{\rm{m}}\], chiều rộng chân đế \[12\;{\rm{m}}\]. Người ta căng hai sợi dây trang trí \[AB\], \[CD\] nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \[\frac{{AB}}{{CD}}\] bằng
Một cổng chào có dạng hình Parabol chiều cao \[18\;{\rm{m}}\], chiều rộng chân đế \[12\;{\rm{m}}\]. Người ta căng hai sợi dây trang trí \[AB\], \[CD\] nằm ngang đồng thời chia hình giới hạn bởi Parabol và mặt đất thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số \[\frac{{AB}}{{CD}}\] bằng

Quảng cáo
Trả lời:

Chọn C
Chọn hệ trục tọa độ \[Oxy\] như hình vẽ.

Phương trình Parabol có dạng \[y = a.{x^2}\] \[\left( P \right)\].
\[\left( P \right)\] đi qua điểm có tọa độ \[\left( { - 6; - 18} \right)\] suy ra: \[ - 18 = a.{\left( { - 6} \right)^2} \Leftrightarrow a = - \frac{1}{2}\] \[ \Rightarrow \left( P \right):y = - \frac{1}{2}{x^2}\].
Từ hình vẽ ta có: \[\frac{{AB}}{{CD}} = \frac{{{x_1}}}{{{x_2}}}\].
Diện tích hình phẳng giới bạn bởi Parabol và đường thẳng \[AB:y = - \frac{1}{2}x_1^2\] là
\[{S_1} = 2\int\limits_0^{{x_1}} {\left[ { - \frac{1}{2}{x^2} - \left( { - \frac{1}{2}x_1^2} \right)} \right]{\rm{d}}x} \]\[\left. { = 2\left( { - \frac{1}{2}.\frac{{{x^3}}}{3} + \frac{1}{2}x_1^2x} \right)} \right|_0^{{x_1}} = \frac{2}{3}x_1^3\].
Diện tích hình phẳng giới hạn bởi Parabol và đường thẳng \[CD\] \[y = - \frac{1}{2}x_2^2\] là
\[{S_2} = 2\int\limits_0^{{x_2}} {\left[ { - \frac{1}{2}{x^2} - \left( { - \frac{1}{2}x_2^2} \right)} \right]{\rm{d}}x} \]\[\left. { = 2\left( { - \frac{1}{2}.\frac{{{x^3}}}{3} + \frac{1}{2}x_2^2x} \right)} \right|_0^{{x_2}} = \frac{2}{3}x_2^3\]
Từ giả thiết suy ra \[{S_2} = 2{S_1} \Leftrightarrow x_2^3 = 2x_1^3\]\[ \Leftrightarrow \frac{{{x_1}}}{{{x_2}}} = \frac{1}{{\sqrt[3]{2}}}\].
Vậy \[\frac{{AB}}{{CD}} = \frac{{{x_1}}}{{{x_2}}} = \frac{1}{{\sqrt[3]{2}}}\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Vì \(AB = 4dm;BC = 8dm.\)\( \Rightarrow A( - 2;4),\)\(B(2;4),C(2; - 4),D( - 2; - 4)\).
parabol là: \(y = {x^2}\) hoặc \(y = - {x^2}\)
Diện tích phần tô đậm là \[{S_1} = 4\int\limits_0^2 {{x^2}dx = \frac{{32}}{3}\begin{array}{*{20}{c}}{}\end{array}(d{m^2})} \]
Diện tích hình chữ nhật là \[S = 4.8 = 32\begin{array}{*{20}{c}}{}\end{array}({m^2})\]
Diện tích phần trắng là \[{S_2} = S - {S_1} = 32 - \frac{{32}}{3} = \frac{{64}}{3}\begin{array}{*{20}{c}}{}\end{array}(d{m^2})\]
Tổng chi phí trang chí là:
Lời giải
Chọn D
Chọn hệ trục \[Oxy\] như hình vẽ.

Gọi \[\left( {{P_1}} \right):y = {a_1}{x^2} + {b_1}\] là Parabol đi qua hai điểm \[A\left( {\frac{{19}}{2};0} \right),B\left( {0;2} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = a.{\left( {\frac{{19}}{2}} \right)^2} + 2\\2 = b\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_1} = - \frac{8}{{361}}\\{b_1} = 2\end{array} \right.\]\[ \Rightarrow \left( {{P_1}} \right):y = - \frac{8}{{361}}{x^2} + 2\].
Gọi \[\left( {{P_2}} \right):y = {a_2}{x^2} + {b_2}\] là Parabol đi qua hai điểm \[C\left( {10;0} \right),D\left( {0;\frac{5}{2}} \right)\]
Nên ta có hệ phương trình sau: \[\left\{ \begin{array}{l}0 = {a_2}.{\left( {10} \right)^2} + \frac{5}{2}\\\frac{5}{2} = {b_2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{a_2} = - \frac{1}{{40}}\\{b_2} = \frac{5}{2}\end{array} \right.\]\[ \Rightarrow \left( {{P_2}} \right):y = - \frac{1}{{40}}{x^2} + \frac{5}{2}\].
Ta có thể tích của bê tông là: \[V = 5.2\left[ {\int_0^{10} {\left( { - \frac{1}{{40}}{x^2} + \frac{5}{2}} \right)} {\rm{d}}x - \int_0^{\frac{{19}}{2}} {\left( { - \frac{8}{{361}}{x^2} + 2} \right)} {\rm{d}}x} \right] = 40\,{{\rm{m}}^3}\].
Số tiền mà tỉnh Phú Yên cần bỏ ra để xây cây cầu là: \[5.40 = 200\] triệu đồng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.