Cho hàm số \(y = \left\{ \begin{array}{l}2x - 1{\rm{ khi }}x \ge 1\\1{\rm{ khi }}0 < x < 1\\1 - 2x{\rm{ khi }}x \le {\rm{0}}\end{array} \right.\). Giá trị lớn nhất của hàm số trên \(\left[ { - 2;2} \right]\) là:
Quảng cáo
Trả lời:
Đáp án đúng là: C
Trên \(\left[ {1;2} \right]\) hàm số \(y = 2x - 1{\rm{ }}\)đồng biến nên giá trị lớn nhất bằng \(y\left( 2 \right) = 3\).
Trên \(\left( {0;1} \right)\) hàm số \(y = 1{\rm{ }}\) nên giá trị lớn nhất bằng \(y = 1\).
Trên \(\left[ { - 2;0} \right]\) hàm số \(y = 1 - 2x\) nghịch biến nên giá trị lớn nhất bằng \(y\left( { - 2} \right) = 5\).
Vậy giá trị lớn nhất của hàm số trên \(\left[ { - 2;2} \right]\) là \(y\left( { - 2} \right) = 5\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Đúng. Hàm số xác định khi \(x + 1 \ge 0\), tức là \(x \ge - 1\).
Vậy tập xác định của hàm số là \(D = \left[ { - 1; + \infty } \right)\).
b) Đúng. Vì \(0 \in D\) và \(1 = \sqrt {0 + 1} \) nên \(M\left( {0;1} \right)\) thuộc đồ thị hàm số.
c) Sai. Vì \(f\left( 1 \right) + f\left( 3 \right) = \sqrt 2 + 2 \ne 5\).
d) Sai. Xét hàm số \(y = f\left( x \right) = \sqrt {x + 1} \) trên khoảng \(\left( {0; + \infty } \right)\).
\(\forall {x_1},{x_2} \in \left( {0; + \infty } \right)\), \({x_1} < {x_2},\) ta có:
\(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \sqrt {{x_1} + 1} - \sqrt {{x_2} + 1} = \frac{{{x_1} + 1 - \left( {{x_2} + 1} \right)}}{{\sqrt {{x_1} + 1} + \sqrt {{x_2} + 1} }} = \frac{{{x_1} - {x_2}}}{{\sqrt {{x_1} + 1} + \sqrt {{x_2} + 1} }} < 0\).
Suy ra \(f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\).
Vậy hàm số đồng biến trên khoảng \(\left( {0; + \infty } \right)\).
Lời giải
Lời giải
a) Đúng. Vì \(x = 0 < 2\) nên \(f\left( 0 \right) = 1 - {0^2} = 1\).
b) Sai. Với \(x > 2\), ta có điều kiện hàm \(y = \sqrt {x - 1} \) là \(x \ge 1\).
Điều này luôn được thỏa mãn với mọi \(x > 2\).
Nên tập xác định trong trường hợp này là \(\mathbb{R}\).
c) Đúng. \(f\left( 2 \right) + f\left( 1 \right) = 1 \Leftrightarrow c + 0 = 1 \Leftrightarrow c = 1\).
Khi đó ta có hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {x - 1} \,\,\,\,\,\,\,\,{\rm{khi}}\,\,\,x > 2}\\{1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,\,x = 2}\\{1 - {x^2}\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x < 2}\end{array}} \right.\).
d) Đúng. Ta có \(t = x + 1 \Rightarrow x = t - 1\).
Khi \(x < 2 \Rightarrow t = x + 1 < 3\). Vậy \(t < 3\) nên ta có \(f\left( t \right) = 1 - {\left( {t - 1} \right)^2} = - {t^2} + 2t\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.