Câu hỏi:

30/07/2025 30 Lưu

Cho hàm số \(y = {x^2} + 4x - 5\).

a) \(y \ge 0\) khi \(x \in \left[ { - 5;1} \right]\).

b) \(y \le 0\) khi \(x \in \left( { - \infty ; - 5} \right] \cup \left[ {1; + \infty } \right)\).

c) Với \(m = \frac{5}{2}\) thì đường thẳng \(d:y = 4x - m\) cắt đồ thị \(\left( P \right)\): \(y = {x^2} + 4x - 5\) tại 2 điểm phân biệt có hoành độ \({x_1},{x_2}\) thoả mãn \(x_1^2 + x_2^2 = 5\).

d) Giá trị nhỏ nhất của hàm số \(y = {x^2} + 4x - 5\) bằng\( - 9\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Sai. Vì \(y = {x^2} + 4x - 5 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le - 5\\x \ge 1\end{array} \right.\).

b) Sai. Vì \(y = {x^2} + 4x - 5 \le 0 \Leftrightarrow - 5 \le x \le 1\).

c) Đúng. Xét phương trình hoành độ giao điểm \({x^2} + 4x - 5 = 4x - m \Leftrightarrow {x^2} = 5 - m\;\;\left( * \right)\).

Đường thẳng \(d:y = 4x - m\) cắt đồ thị \(\left( P \right)\) tại 2 điểm phân biệt có hoành độ \({x_1},{x_2}\) \( \Leftrightarrow \left( * \right)\) có hai nghiệm phân biệt \( \Leftrightarrow 5 - m > 0 \Leftrightarrow m < 5\).

Khi đó: \(\;\left( * \right) \Leftrightarrow \left[ \begin{array}{l}{x_1} = \sqrt {5 - m} \\{x_2} = - \sqrt {5 - m} \end{array} \right.\)

\(x_1^2 + x_2^2 = 5 \Rightarrow {\left( {\sqrt {5 - m} } \right)^2} + {\left( { - \sqrt {5 - m} } \right)^2} = 5 \Leftrightarrow 10 - 2m = 5 \Leftrightarrow m = \frac{5}{2}\).

Vậy với \(m = \frac{5}{2}\) thì đường thẳng \(d:y = 4x - m\) cắt đồ thị \(\left( P \right)\) tại 2 điểm phân biệt có hoành độ \({x_1},{x_2}\) thoả mãn \(x_1^2 + x_2^2 = 5\).

Ngoài ra, ta có thể thay \(m = \frac{5}{2}\) vào phương trình \(\left( * \right)\), sau đó tính \({x_1},{x_2}\) và xét xem có thỏa mãn yêu cầu bài toán không.

d) Đúng. Giá trị nhỏ nhất của hàm số \(y = {x^2} + 4x - 5\) bằng \( - 9\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Gọi \(x\left( {x \ge 0} \right)\) (nghìn đồng) là số tiền tăng lên cho mỗi ki-lô-gam rau.

a) Đúng. Số tiền bán mỗi một ki-lô-gam rau sau khi tăng giá là \(x + 30\) (nghìn đồng).

b) Sai. Số ki-lô-gam rau thừa là \(20x\,\,\left( {x \le 50} \right)\).

Tổng số ki-lô-gam rau bán được là \(1000 - 20x\) (kg).

c) Đúng. Tổng số tiền thu được là

\(T = \left( {1000 - 20x} \right)\left( {x + 30} \right) + 20x.2 = - 20{x^2} + 440x + 30000\) (nghìn đồng).

d) Đúng. Để số tiền không nhỏ hơn 31140 nghìn đồng thì \( - 20{x^2} + 440x + 30000 \ge 31140\)\( \Leftrightarrow - 20{x^2} + 440x - 1140 \ge 0\)\( \Leftrightarrow 3 \le x \le 19\). Suy ra \(x \in \left[ {3;19} \right]\).

Lời giải

Lời giải

Giả sử vị trí ban đầu của chú thỏ đen là \(s = 0\,\,{\rm{(m)}}\) và thời điểm ban đầu là \(t = 0\) (giây).

Quãng đường của chú thỏ trắng chạy được tại thời điểm \(t\) là \(f\left( t \right) = 100 + 3t\,\,{\rm{(m)}}\).

Để chú thỏ đen chạy trước chú thỏ trắng thì \(s\left( t \right) > f\left( t \right)\)

hay \(8t + 5{t^2} > 100 + 3t \Rightarrow 5{t^2} + 5t - 100 > 0 \Rightarrow t > 4 \Rightarrow t \in \left( {4; + \infty } \right)\) (vì \(\left. {t > 0} \right)\).

Vậy tại những thời điểm \(t \in \left( {4; + \infty } \right)\) thì chú thỏ đen chạy trước chú thỏ trắng.

Khi đó, \(a = 4\).

Đáp án: 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP