Một quả bóng được đá lên từ độ cao \(1,5\) mét so với mặt đất. Biết quỹ đạo của quả bóng là một đường parabol có phương trình \(h\left( t \right) = - 0,5{t^2} + 2,75t + 1,5\) trong đó \(t\) là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên và \(h\) là độ cao (tính bằng mét) của quả bóng.
a) Quả bóng chạm mặt đất khi \(t = 5\) giây.
b) Quả bóng đạt độ cao lớn nhất khi \(t = 2,75\) giây.
c) Quả bóng có độ cao lớn hơn \(1,5\) mét so với mặt đất trong khoảng thời gian \(0 < t < 6\).
d) Quả bóng có độ cao lớn hơn \(1,5\) mét so với mặt đất trong thời gian là \(5\) giây.
Quảng cáo
Trả lời:
Lời giải
a) Sai. Ta có \(h\left( t \right) = 0 \Leftrightarrow - 0,5{t^2} + 2,75t + 1,5 = 0 \Leftrightarrow t = - 0,5;t = 6\).
Suy ra quả bóng chạm mặt đất khi \(t = 6\) giây.
b) Đúng. \(h\left( t \right) = - 0,5{t^2} + 2,75t + 1,5 = - 0,5{\left( {t - \frac{{11}}{4}} \right)^2} + \frac{{169}}{{32}} \le \frac{{169}}{{32}}\) khi \(t = \frac{{11}}{4} = 2,75\)(giây).
Quả bóng đạt độ cao lớn nhất khi \(t = 2,75\) giây.
c) Đúng. Quả bóng có độ cao lớn hơn \(1,5\) mét so với mặt đất khi:
\(h\left( t \right) > 0 \Leftrightarrow - 0,5{t^2} + 2,75t + 1,5 > 0 \Leftrightarrow - 0,5 < t < 6\).
Mà \(t > 0\) nên suy ra \(0 < t < 6\).
Quả bóng có độ cao lớn hơn \(1,5\) mét so với mặt đất trong khoảng thời gian \(0 < t < 6\).
d) Sai. Quả bóng có độ cao lớn hơn \(1,5\) mét so với mặt đất trong thời gian là \(6\) giây.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Giả sử vị trí ban đầu của chú thỏ đen là \(s = 0\,\,{\rm{(m)}}\) và thời điểm ban đầu là \(t = 0\) (giây).
Quãng đường của chú thỏ trắng chạy được tại thời điểm \(t\) là \(f\left( t \right) = 100 + 3t\,\,{\rm{(m)}}\).
Để chú thỏ đen chạy trước chú thỏ trắng thì \(s\left( t \right) > f\left( t \right)\)
hay \(8t + 5{t^2} > 100 + 3t \Rightarrow 5{t^2} + 5t - 100 > 0 \Rightarrow t > 4 \Rightarrow t \in \left( {4; + \infty } \right)\) (vì \(\left. {t > 0} \right)\).
Vậy tại những thời điểm \(t \in \left( {4; + \infty } \right)\) thì chú thỏ đen chạy trước chú thỏ trắng.
Khi đó, \(a = 4\).
Đáp án: 4.
Lời giải
Lời giải
Hàm số \(y = \frac{{2024x + 2025}}{{\sqrt {m{x^2} + 2mx + 9} }}\) có tập xác định \(\mathbb{R}\) \( \Leftrightarrow m{x^2} + 2mx + 9 > 0,\forall x \in {\mathbb{R}^{}}(1)\).
+ \(m = 0\) thoả mãn \((1)\).
+ \(m \ne 0\), \((1) \Leftrightarrow \)parabol \(y = m{x^2} + 2mx + 9 > 0\) nằm hoàn toàn phía trên trục hoành \( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\ - \frac{\Delta }{{4m}} > 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta = {m^2} - 9m < 0\end{array} \right.\)\( \Leftrightarrow 0 < m < 9\).
Kết hợp 2 trường hợp ta được \( \Leftrightarrow 0 \le m < 9\).
Vậy có 9 giá trị nguyên của \(m\) thoả mãn.
Đáp án: 9.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[S = \left( { - \infty ; - 2} \right) \cup \left( {3; + \infty } \right).\]
B. \[S = \left[ {3; + \infty } \right).\]
C. \[S = \left( { - \infty ; - 2} \right].\]
D. \[S = \left( { - 2;3} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
