Câu hỏi:

30/07/2025 63 Lưu

Cho \(\cot \alpha = \frac{1}{3}\). Giá trị của biểu thức \(A = \frac{{3\sin \alpha + 4\cos \alpha }}{{2\sin \alpha - 5\cos \alpha }}\) là:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có \(A = \frac{{\frac{{3\sin \alpha + 4\cos \alpha }}{{\sin \alpha }}}}{{\frac{{2\sin \alpha - 5\cos \alpha }}{{\sin \alpha }}}}\,\, = \,\,\frac{{3\, + 4\,\cot \alpha }}{{2 - \,5\,\cot \alpha }}\,\, = \,\,\frac{{3\,\, + \,\,4 \cdot \,\frac{1}{3}}}{{2\, - \,5 \cdot \frac{1}{3}}}\, = \,\,\,13\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\tan \alpha - \cot \alpha = 3 \Leftrightarrow {\left( {\tan \alpha - \cot \alpha } \right)^2} = 9 \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha - 2\tan \alpha \cdot \cot \alpha = 9\)

\( \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha - 2 = 9 \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha = 11\).

Lời giải

Lời giải

Vì \(\tan \alpha = 1 \Rightarrow \cos \alpha \ne 0\). Chia cả tử và mẫu cho \({\cos ^2}\alpha \) ta được:

\(B = \frac{{\left( {{{\sin }^2}\alpha + 1} \right)\frac{1}{{{{\cos }^2}\alpha }}}}{{\left( {2{{\cos }^2}\alpha - {{\sin }^2}\alpha } \right)\frac{1}{{{{\cos }^2}\alpha }}}} = \frac{{{{\tan }^2}\alpha + \frac{1}{{{{\cos }^2}\alpha }}}}{{2 - {{\tan }^2}\alpha }} = \frac{{{{\tan }^2}\alpha + {{\tan }^2}\alpha + 1}}{{2 - {{\tan }^2}\alpha }} = 3\).

Đáp án: 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP