Câu hỏi:

19/08/2025 52 Lưu

Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

Media VietJack

Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Bảng dưới đây thống kê cự li ném tạ của một vận động viên. (ảnh 1)

Cỡ mẫu: \({\rm{n}} = 100\)

Số trung bình: \(\bar x = \frac{{13.19,25 + 45.19,75 + 24.20,25 + 12.20,75 + 6.21,25}}{{100}} = 20,015\)

Phương sai: \({S^2} = \frac{{{{13.19,25}^2} + {{45.19,75}^2} + {{24.20,25}^2} + {{12.20,75}^2} + {{6.21,25}^2}}}{{100}} - {20,015^2} \approx 0,28\)

Độ lệch chuẫn: \(\sigma  = \sqrt {0,28}  \approx 0,53\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng thống kê giá đóng cửa theo giá trị đại diện:
Media VietJack

Xét mẫu số liệu của cổ phiếu A:

Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_1} = \frac{{8.121 + 9.123 + 12.125 + 10.127 + 11.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_1^2\] = \[\frac{1}{{50}}\] (8 . 1212 + 9 . 1232 + 12 . 1252 + 10 . 1272 + 11 . 1292) – (125,28)2 = 7,5216.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_1} = \sqrt {S_1^2}  = \sqrt {7,5216} \]
Xét mẫu số liệu của cổ phiếu B:
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_2} = \frac{{16.121 + 4.123 + 3.125 + 6.127 + 21.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_2^2\]=\[\frac{1}{{50}}\] (16 . 1212 + 4 . 1232 + 3 . 1252 + 6 . 1272 + 21 . 1292) – (125,48)2 = 12,4096.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} = \sqrt {S_2^2}  = \sqrt {12,4096} \]
Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cổ phiếu B.

Lời giải

a) Cỡ mẫu là n = 20.
Số trung bình của mẫu số liệu trên là: \[{\bar x_1} = \frac{{111,6 + 134,9 + ... + 114}}{{20}} = 122,755\]
Phương sai của mẫu số liệu trên là: S12 =\[\frac{1}{{20}}\] (111,62 + 134,92 + … + 1142) – 122,7552 ≈ 515,453.
Độ lệch chuẩn của mẫu số liệu trên là \[{S_1} \approx \sqrt {515,453}  \approx 22,704\]
b) Ta có bảng sau:
Media VietJack
Số trung bình của mẫu số liệu ghép nhóm là: \[{\bar x_2} = \frac{{3.89 + 6.107 + 3.125 + 5.143 + 3.161}}{{20}} = 124,1\]
Phương sai của mẫu số liệu ghép nhóm là
                                    S22 = \[\frac{1}{{20}}\] (3 . 892 + 6 . 1072 + 3 . 1252 + 5 . 1432 + 3 . 1612) – 124,12 = 566,19.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} \approx \sqrt {566,19}  \approx 23,795\]
c) Sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc là
\[\frac{{\left| {{S_2} - {S_1}} \right|}}{{{S_1}}} = \frac{{\left| {23,795 - 22,704} \right|}}{{22,704}} \cdot 100\%  \approx 4,805\% \]