Câu hỏi:

03/08/2025 6 Lưu

Cho bảng số liệu ghép nhóm về độ tuổi của cư dân trong một khu phố. Tính phương sai và độ lệch chuẩn của mẫu số liệu đó

Cho bảng số liệu ghép nhóm về độ tuổi của cư dân trong một khu phố. Tính phương sai và độ lệch chuẩn của mẫu số liệu đó (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số trung bình cộng của mẫu số liệu ghép nhóm được cho bởi Bảng 21 là:

\(\bar x = \frac{{25 \cdot 25 + 20 \cdot 35 + 20 \cdot 45 + 15 \cdot 55 + 14 \cdot 65 + 6 \cdot 75}}{{100}} = \frac{{4410}}{{100}} \approx 44\)

Vậy phương sai của của mẫu số liệu ghép nhóm được cho bởi Bảng 21 là:

\(\begin{array}{l}{s^2} = \frac{1}{{100}} \cdot \left[ {25 \cdot {{(25 - 44)}^2} + 20 \cdot {{(35 - 44)}^2} + 20 \cdot {{(45 - 44)}^2}} \right.\left. { + 15 \cdot {{(55 - 44)}^2} + 14 \cdot {{(65 - 44)}^2} + 6 \cdot {{(75 - 44)}^2}} \right]\\{\rm{   }} = \frac{{24420}}{{100}} = 244,2\end{array}\)Độ lệch chuẩn của mẵu số liệu ghép nhóm trên là: \(s = \sqrt {244,2}  \approx 15,6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng thống kê giá đóng cửa theo giá trị đại diện:
Media VietJack

Xét mẫu số liệu của cổ phiếu A:

Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_1} = \frac{{8.121 + 9.123 + 12.125 + 10.127 + 11.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_1^2\] = \[\frac{1}{{50}}\] (8 . 1212 + 9 . 1232 + 12 . 1252 + 10 . 1272 + 11 . 1292) – (125,28)2 = 7,5216.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_1} = \sqrt {S_1^2}  = \sqrt {7,5216} \]
Xét mẫu số liệu của cổ phiếu B:
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_2} = \frac{{16.121 + 4.123 + 3.125 + 6.127 + 21.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_2^2\]=\[\frac{1}{{50}}\] (16 . 1212 + 4 . 1232 + 3 . 1252 + 6 . 1272 + 21 . 1292) – (125,48)2 = 12,4096.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} = \sqrt {S_2^2}  = \sqrt {12,4096} \]
Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cổ phiếu B.

Lời giải

a) Ta có bảng sau:
Media VietJack
b) Xét mẫu số liệu của khu vực A: Cỡ mẫu là nA = 4 + 5 + 5 + 4 + 2 = 20.
Số trung bình của mẫu số liệu ghép nhóm là: \[{\bar x_A} = \frac{{4.5,5 + 5.6,5 + 5.7,5 + 4.8,5 + 2.9,5}}{{20}} = 7,25\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_A^2\]= \[\frac{1}{{20}}\] (4 . 5,52 + 5 . 6,52 + 5 . 7,52 + 4 . 8,52 + 2 . 9,52) – (7,25)2 = 1,5875.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_A} \approx \sqrt {1,5875} \]
Xét mẫu số liệu của khu vực B: Cỡ mẫu là nB = 3 + 6 + 5 + 5 + 1 = 20.
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_B} = \frac{{3.5,5 + 6.6,5 + 5.7,5 + 5.8,5 + 1.9,5}}{{20}} = 7,25\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_B^2\] = \[\frac{1}{{20}}\] (3 . 5,52 + 6 . 6,52 + 5 . 7,52 + 5 . 8,52 + 1 . 9,52) – (7,25)2 = 1,2875.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_B} \approx \sqrt {1,2875} \]   
Do SA > SB nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì mức lương khởi điểm của công nhân khu vực B đồng đều hơn của công nhân khu vực A.