Câu hỏi:

19/08/2025 22 Lưu

Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị: km/h) được thống kê lại như sau:

Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị: km/h) được thống kê lại như sau: (ảnh 1)

a) Hãy tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của mẫu số liệu trên.

b) Hãy lập bảng tần số ghép nhóm với nhóm đầu tiên là [42; 46) và độ dài mỗi nhóm bằng 4.

c) Hãy tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn của mẫu số liệu ghép nhóm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Khoảng biến thiên của mẫu số liệu: \(61,1 - 42 = 19,1(\;{\rm{km}}/{\rm{h}})\)

Cỡ mẫu: \(n = 20\)

Gọi \({x_1};{x_2}; \ldots ;{x_{20}}\) là mẫu số liệu gốc về tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ được xếp theo thứ tự không giảm.

Trung vị \({Q_2} = \frac{1}{2}\left( {{x_{10}} + {x_{11}}} \right) = \frac{1}{2}(48,4 + 50,8) = 49,6\)

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái

\({Q_2}{Q_1} = \frac{1}{2}\left( {{x_5} + {x_6}} \right) = \frac{1}{2}(46,7 + 46,8) = 46,75\)

Tứ phân vị thứ ba là trung bị của nửa số liệu bên phải

\({Q_2}:{Q_3} = \frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) = \frac{1}{2}(54,8 + 55,6) = 55,2\)

Khoảng tứ phân vị của mẫu số liệu là: \({\Delta _Q} = {Q_3} - {Q_1} = 8,45\)

Số trung bình: $\bar{x}=\frac{42+43,4+\ldots+61,1}{20}=50,945$

Phương sai: $S^2=\frac{42^2+43,4^2+\ldots+61,1^2}{20}-50,945^2 \approx 32,2$

Độ lệch chuẫn: $\sigma=\sqrt{32,2} \approx 5,67$

b)

Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị: km/h) được thống kê lại như sau: (ảnh 2)

c) Ta có: \({x_1}; \ldots ;{x_3} \in [42;46);{x_4}; \ldots ;{x_{10}} \in [46;50);{x_{11}}; \ldots ;{x_{14}} \in [50;54);{x_{15}}; \ldots ;{x_{17}} \in [54;58)\);

\({x_{18}}; \ldots ;{x_{20}} \in [58;62)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) \in [46;50)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime  = 46 + \frac{{\frac{{20}}{4} - 3}}{7}(50 - 46) = \frac{{330}}{7}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) \in [54;58)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime  = 54 + \frac{{\frac{{3.20}}{4} - (3 + 7 + 4)}}{3}(58 - 54) = \frac{{166}}{3}\) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}^\prime  = {Q_3}^\prime  - {Q_1}^\prime  = \frac{{172}}{{21}}\)

Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị: km/h) được thống kê lại như sau: (ảnh 3)

Số trung bình: \(\bar x = \frac{{3.44 + 7.48 + 4.52 + 3.56 + 3.60}}{{20}} = 41,8\)

Phương sai: \({S^2} = \frac{{{{3.44}^2} + {{7.48}^2} + {{4.52}^2} + {{3.56}^2} + {{3.60}^2}}}{{20}} - {41,8^2} = 364,96\)

Độ lệch chuẩn: \(\sigma  = \sqrt {364,96}  = 19,1\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng thống kê giá đóng cửa theo giá trị đại diện:
Media VietJack

Xét mẫu số liệu của cổ phiếu A:

Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_1} = \frac{{8.121 + 9.123 + 12.125 + 10.127 + 11.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_1^2\] = \[\frac{1}{{50}}\] (8 . 1212 + 9 . 1232 + 12 . 1252 + 10 . 1272 + 11 . 1292) – (125,28)2 = 7,5216.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_1} = \sqrt {S_1^2}  = \sqrt {7,5216} \]
Xét mẫu số liệu của cổ phiếu B:
Số trung bình của mẫu số liệu ghép nhóm là \[{\bar x_2} = \frac{{16.121 + 4.123 + 3.125 + 6.127 + 21.129}}{{50}} = 125,28\]
Phương sai của mẫu số liệu ghép nhóm là
\[S_2^2\]=\[\frac{1}{{50}}\] (16 . 1212 + 4 . 1232 + 3 . 1252 + 6 . 1272 + 21 . 1292) – (125,48)2 = 12,4096.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} = \sqrt {S_2^2}  = \sqrt {12,4096} \]
Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cổ phiếu B.

Lời giải

a) Cỡ mẫu là n = 20.
Số trung bình của mẫu số liệu trên là: \[{\bar x_1} = \frac{{111,6 + 134,9 + ... + 114}}{{20}} = 122,755\]
Phương sai của mẫu số liệu trên là: S12 =\[\frac{1}{{20}}\] (111,62 + 134,92 + … + 1142) – 122,7552 ≈ 515,453.
Độ lệch chuẩn của mẫu số liệu trên là \[{S_1} \approx \sqrt {515,453}  \approx 22,704\]
b) Ta có bảng sau:
Media VietJack
Số trung bình của mẫu số liệu ghép nhóm là: \[{\bar x_2} = \frac{{3.89 + 6.107 + 3.125 + 5.143 + 3.161}}{{20}} = 124,1\]
Phương sai của mẫu số liệu ghép nhóm là
                                    S22 = \[\frac{1}{{20}}\] (3 . 892 + 6 . 1072 + 3 . 1252 + 5 . 1432 + 3 . 1612) – 124,12 = 566,19.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \[{S_2} \approx \sqrt {566,19}  \approx 23,795\]
c) Sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc là
\[\frac{{\left| {{S_2} - {S_1}} \right|}}{{{S_1}}} = \frac{{\left| {23,795 - 22,704} \right|}}{{22,704}} \cdot 100\%  \approx 4,805\% \]